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ABSTRACT

Physically based models which describe the finite strain behavior of vulcanized

rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by

integrating over orientation space the forces due to each individual polymer chain. A

novel scheme is presented which effectively approximates these integrals in terms of

strain and strain invariants. In addition, the details involving the implementation of such

models into a quasi-static large strain finite element formulation are provided.

In order to account for the finite extensibility of a molecular chain, Langevin

statistics is used to model the chain response. The classical statistical model of rubber

assumes that polymer chains interact only at the chemical crosslinks. It is lmown that

such model when fitted for uniaxial tension data cannot fit compression or equibiaxial

data. A model which incorporates the entanglement interactions of surrounding chains, in

addition to the finite extensibility of the chains, is shown to give better predictions than

the classical model. The technique used for approximating the orientation space integral

was applied to both the classical and entanglement models.

A viscoelasticity model based on the force equilibration process as described by

Doi and Edwards is developed. An assumed form for the transient force in the chain is

postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion

with the elastic stress given by the proposed entanglement model. In order to improve the

simulation of experimental data, it was found necessary to include the effect of

unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic

effect of such chains is the manifestation of a disengagement process. This

disengagement model for unattached polymer chains motivated an empirical model

which was very successful in simulating the experimental results considered.

,°,
111



TABLE OF CONTENTS
TITLE PAGE ............... : ..................................................................................: ................i

ACKNOWLEDGMENTS ........................................................................ ........................ ii

ABSTRACT ...................... .......................................... . ...................................................iii

¯ INTRODUCTION ............................................................................................ . ..............1

1. CLASSICAL MODEL FOR RUBBER ELASTICITY .............................................. 4

1.1 Introduction ...................................................................................................4

1.2 Development of the Classical Constitutive Model and Approximations ...... 5

2. ENTANGLEMENT MODEL FOR RUBBER ELASTICITY ................................... 17

2.1 Introduction ............................................................................ .......................17

2.2 Development of the Entanglement Constitutive Model ....................... . ........19

2.3 Verification of Entanglement Model ............................................................. 24

2.4 Approximation of Constitutive Model ......... : ................................................27

2.5 Analysis of Results from Entanglement Model ............................................ 32

3. CONSTITUTIVE EQUATIONS USING VIRTUAL WORK ................................... 36

4. VISCOELASTICITY MODELS FOR RUBBER, .......................... . ...........................43

4.1 Introduction ................................................... i ...............................................43

4.2 Topics from Rheology ................................................................................... 44

4.2 a Polymer Fluids ............................................................................................46

4.2 b Polymer Melts ............................................................................................ 51

4.3 Proposed Force Equilibration Viscoelasticity Model .................................... 64

4.4 Thermodynamic Considerations ................................................................... 69

4.5 Approximation of the Viscoelastic Backstress ............ .................................. 70

4.6 Comparison of Force Equilibration Viscoelastic Model to

Experimental Results ........................................................................................... 75

4.7 Evaluation of Results .................................................................................... 83

4.8 Two Network Theory .......................................................................... ...........87

4.9 Proposed Phenomeriological Model .............................................................. 91

4.10 Conclusions ............. ¯ ....................................................................................93

5. FINITE ELEMENT IMPLEMENTATION ...................... . .........................................96

CONCLUSIONS AND RECOMMENDATIONS ........... i ..............................................103

REFERENCES .................. .............................................................................................. 105

APPENDIX A ........................ : ..... ..................i ................................................................111

APPENDIX B ................................................................................................................. 114

APPENDIX C ........................................ ~ ................................................... .....................117

APPENDIX D ................................................................................................................. 119



INTRODUCTION

With increased interest in the modeling of tire performance and elastomeric

bearings and the development of mechanistic models for filled rubbers and polymer

composites it seems that physically based constitutive models for the polymer matrix

need be considered. Such models can provide better insight into the effects small filler

particles or glass fibers may have on a polymer matrix or how the residual stresses evolve

as the rubber passes from the melt stage to the vulcanized rubber in the tire forming

process. Rheologists have made significant efforts in characterizing the behavior of

polymers and in particular polymer fluids. Meanwhile, the mechanics community has

been relatively unaware of the advances made in polymer science. In this work itwas

intended to draw concepts from the field of rheology and use them to provide polymer

models that would be of interest to the mechanical or structural engineer. In this context

the models would be based on a limited amount of statistical analysis and would be more

intuitivel The constitutive models presented in this work are mainly extensions of theories

given by rheologists but in a language comprehensible to an engineer.
(

The Neo-Hookean model for rubber provides a simple closed form constitutive

law and in view of its simplicity gives reasonably good results. The original Langevin

statistics model outlined by Treloar (1975) is based on the same kinematics as the Neo-

Hookean model, but includes the effects of finite extensible chains. The constitutive

equation for the Langevin statistics model is given by an integration over orientation

space and can not be solved in closed form. Approximations such that chains are lumped

in particular directions have been made. A series approach is used here to approximate

the constitutive law. The nature of the expansion made provides a more accurate

approximation than has been made in the past. In addition, the approximate constitutive

law is in terms of the Cauchy Green tensor and strain invariance, hence no explicit

calculation for the principle stretch and principle stretch axes is necessary.
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It is known that this Langevin statistical model when fitted for uniaxial tension

data cannot fit compression data. This discrepancy is seen to be severe for the data

considered in this study*. A constitutive law that could model the behavior in both

compression and tension and includes the effects of finite extensible chains was sought.

A simple form of entanglement model was generalized such that it included finite

extensible chains and fit the experimental data well. The same approximation technique

that was used on the classical Langevin statistics model was used to get a closed form for

the entanglement constitutive law.

A viscoelastic constitutive law based on the force equilibration concepts given by

Doi and Edwards (1986) is proposed. In this model all the chains are assumed to 

crosslinked and the viscoelasticity is due to a reconfiguration of chain sections after

friction forces from the surrounding polymer network have carried the chain into a non-

equilibrium position. An empirical form for the transient force in the chain is postulated.

Again, the method for approximating the orientation space integrals proved useful in

providing a closed form for the constitutive equation.

Predictions given by the force equilibration model of viscoelasticity compared to

experimental data suggested the need to consider the unattached polymer chains. A two

network theory is assumed; the network is composed of crosslinked and uncrosslinked

chains acting independently. Doi and Edwards (1978) reptation model is used to capture

the effects of the unattached chains while the elastic entanglement model is used to

capture the effects of the crosslinked chains. In this model only the unattached chains

Contribute to the viscous stress while only the crosslinked chains contribute to the

elasticity.

The two network model suggested a form for an empirical model which was very

successful in simulating the experimental results considered. Perhaps, one of the biggest

* Actually’the data for equibiaxial tension is considered here in lieu of compression. The rubber is nearly
incompressible, hence results from equibiaxial tension can be considered equivalent to uniaxial
compression after the stress is adjusted by a hydrostatic pressure.
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contributions mechanistic models can make is in suggesting phenomenological forms

for constitutive equations.



4

1. CLASSICAL MODEL FOR RUBBER ELASTICITY

1.1 Introduction

Many constitutive models are available for modeling rubbery polymers in the large

strain regime: Of them, the phenomenological Ogden’s method (Ogden, 1972) seems to 

the most proficient. These models, for the most part, are relied upon to capture the upturn

in stress vs. strain seen at very high strain levels. The upturn is often attributed to the finite

extensibility of the polymer chains although in some circumstances it is due to strain

induced crystallization depending on the type of polymer considered. In addition to purely

phenomenological methods are the so called statistical mechanics models. The Neo-

Hookean method which relies on Gaussian statistics does not consider finite extensibility of

the molecular chains. Treloar in numerous publications (Treloar, 1975 and 1979; Jones and

Treloar, 1975; Vangerko and Treloar, 1978 etc.), James and Guth (1943), Flory (1961)

etc. have given attention to the Langevin statistical model of the polymer which

incorporates the finite extensibility effects of deformation. But due to the complex nature of

the Langevin function and kinematics it was difficult to arrive at any definitive method to

apply the Langevin statistics in a constitutive model. Most of the methods used until

recently lumped all the chains in particular orientations and solved the problems accordingly

i.e. Flory’s ’tetrahedral ’ model and James and Guth’s ’three chain’ model. An eight chain

model has also been proposed by Arruda and Boyce (1992). The draw backs of these

models have been discussed at quite length. Treloar (1979) used Gauss point integration 

incorporate the contributions from all chains to get results for shear and biaxial loading

conditions.Wu and Van Der Giessen (1993) compared results from the three, and eight

chain models to the numerical integration procedure given by Treloar (1979). The

numerical integration procedure is not amenable to general boundary value problems using

for instance a finite element procedure. A method which relies on a series expansion of the

integral given by Treloar is proposed and can be used to solve generalized boundary



problems. Because of the nature of the approximation technique used, the method yields

good results for relatively high strains. The theory for rubber in this section does not

incorporate effects due to entanglements. This theory will be referred to as the "classical

theory" in contrast to the "entanglement model" presented¯ in Section 2.

1.2 Development of the Classical Constitutive Model and Approximations

Rubber is composed of a network of long chain molecules which are connected at

junction points by chemical crosslinks. It is commonly assumed that each junction point

moves affmely and that each molecular chain vector r deforms as a material line. A typical

molecular chain is shown in Fig. 1.2.1.

¯ 1

r

1 = length of statistical link

N = number of statistical links per chain

r = chain vector

r - chain vector length

r= initial vector length of chain

Fig. 1.2.1 Typical molecular chain shown in bold along with important parameters

Based on some physical arguments as discussed in Treloar (1975),(1979) the initial chain

length is ro = q-N- 1. Therefore r = ~, ro = 2~ q-N- 1 where 2~ is the stretch of the chain vector.

Using Langevin statistics to describe the free energy in a polymer chain the

following relation is given (Treloar, 1975) 

= L-i,q_N_, ( ~-~-~ + In - 1 (q_N_)/~, sinh__ L-t ~__K...N k’r (t,
L([3) = coth(13) - 

where s is the entropy, T is the temperature, L-I is the inverse Langevin function and k is

Boltzman’s constant. Furthermore to calculate the total amount of free energy per unit

volumedue to all chains, Eq. 1.2.1 (a) is.integrated over all possible orientations as such:

(1.2.1 a)

(1.2.1 b)



W(~,) = nl~ w(~) C(0,0) sin 
p ao

dO (.11212~

00

where n is the number of chains per unit volume*, 0 and 0 are the spherical coordinates of

the current orientation of a given chain, 3, = ~,(0,0), and C(0,0) is the orientation

distribution function (Wu andVan Der Giessen, 1993) such that C(0,0) sin 0 O i s the

fraction of chains in a given direction.

The integral in Eq 1.2.2 is in terms of the variables (0,0) which represent the

current orientation of chains. The initial orientation of a given chain may be represented by

the spherical coordinates (O,~). The deformed and undeformed coordinates are

interchangeable and the following transformations are used:

(0,0) = (0(O,@;t), O(O,@;t)) (’1.2.3 

a(0,0) a0 ~ a0 /)~
(1.2.3 b)J=J(®’~)= ~ =~~-3(I) 

dO dO = J dO d~ (1.2.3 c)

where J is jacobian. Using 1.2.2 and 1.2.3, a change of variables is made from current

orientations (0,0) to initial orientations (O,~) giving:

2~ r~

W(~,) = nil w(~,) C(0,0) J sin 0 ( 1.2.4)
00

Conservation of the number of chain vectors between the deformed and undeformed

configuration requires that C(0,0) sin 0 dO dO = C(O,~) sin ® dO d~. Using (1.2.3 

along with the assumption that the initial distribution of the chains is isotropic, i.e. C(®,~)

= 1/4n, yields C(0,0) J sin 0 dO d~ = (1/4rt) sin® dO d~. Hence, Eq. (1.2.4) becomes,

21t

ff sin (9 dO d~ (1.2.5)W(~,) = n w(~,) 
00

6

* The rubber is assumed to be incompressible, hence no distinction is made between deformed and
undeformed volume



Now the free energy in a chain w0~) is given by 1.2.1 while the a,cerage force in the chain

is given by:
dw(~,) dw(~,) 1 _kT L-l( 

f0~)- ~ - -~ fN-I -]---"~"
(1.2.6)

12.00

8.00

4.00

0.00

I I I

16.00
m m-inverse Langevin approximation

--inverse Langevin

I I I I
0 0.2 0.4 0.6 0.8

Fig. 1.2.2 Inverse Langevin from numerical solution to Eq. 1.2.1 (b) plotted with inverse

Langevin approximation Eq. 1.2.7. Both functions go to infinity as ~, / fN- goes to 1.

(1.2.7)

20.00

where use of r = ~, ~ 1 is made. Although Eq. 1.2.6 will not be needed explicitly,

derivatives of the free energy "w" will be necessary and the inverse Langevin function will

be necessary. There is no closed form for the inverse Latigevin function. The function can

only be found by numerically solving the inverse problem of Eq. 1.2.1 (b) or by a series

representation which due to its infinite limit at )~ = fN-, converges very slowly at high

extensions. A highly accurate approximation was sought for the inverse Langevin function

to solve this problem. The approximation given by Eq. 1.2.7 is proposed and is plotted in

Fig. 1.2.2 along with the numerical inverse to Eq. 1.2.1 (b).

3~,



Integrating 1.2.7 gives the following approximation to Eq. 1.2.1 for the free energy

of a stretched chain"

w(~,) = NkT In ~-~/~r-~----~ ) - q~Tan-l( (1.2.8)

8

Substitution of 1.2.8 into 1.2.5 gives the following approximation for the total strain

energy which is not integrable analytically.

2~t

ff(1 (.1 + ~¢rN- + (~v/-N-) 2 ~Jv/-N-)) sin 
W(~,) = NnkT In

~/~,_~_---~
)- ~ Tan-l(,1 -+ 2

~47z dO d~
0 0

(1.2.9)

It is clear ttiat the three chain method of James and Guth is a Gauss point

approximation of Eq. 1.2.5 where six Gauss points are used and located on the

Lagrangian principle axes of strain. Eq. 1.2.10 illustrates James and Guth’s method.

W(~,) - ~ (w(~,l) + W(~,2) + W(~,3))

Ow
Oi = ~’i -~ii + P

(1.2.10)

Where ~i and ~.i are the principle stress and principle stretch respectively. Such a method

gives the free energy as a function of principle stretches and has the appearance of Ogden’s

method. Methods in terms of principle stress are not the most efficient to implement into a

finite element procedure.’Furth~rmore, as shown in Van Der Giessen (1993), Treloar

(1979) and further on here, the three chain method is much stiffer than the exact (numerical

integration) solution to Eq. 1.2.5. The unit vector for the direction cosines of the chain

vector r in the Lagrangian coordinate system is denoted M (see Fig. 1.2.3) such that

M = (M1, M2, M3) = (sin ® cos ~, sin ® sin ~, cos ®) (1.2.11)



This convention (1.2.11) will be used throughout this work. It can be shown that the

method by Arruda and Boyce results from a Gauss point integration of Eq 1.2.5 with eight

Gauss points at the spherical coordinate positions (O,~) -- (54.74°, 45°), (54.74°, 135°),

(-54.74°, 45°) etc. such that the directions cosines have the following values:

(sin ® cos O, sin O sin ~, cos O) = (_+ l/q-3-, _+ l/q3, _+ l/q-3-)

XaL~ M
\OA M AP’ 

/"M2

Fig. 1.2.3 The Lagrangian principle coordinate system with spherical coordinates

(O,~) and unit vector M = (M1, M2, M3) = (sin O cos ~, sin O sin ~, cos 

At this orientation ~2 = MT C M = I1 / 3 where C is the diagonal Green strain tensor in the

principle coordinate system. Where I1 and I2 are the first and second invariants defined as

such I1 = tr C and I2 = 1/2 ( (tr ~- tr C2 ). Since thestretch ~, =q~-x / 3 at this

orientation, the following is the Gauss point approximation for the strain energy and

stress:

v~r(~.) =n w(5/ill / (1.2.12 a)

3w(~1/ 3) 3IiSKI. = n ~- p FkK FkL
011 3CKL (1.2.12 b)

or, with w(~,) given by Eq. 1.2.1 such that its derivative follows from Eq. 1.2.6, Eq. 1.12

(b) is rewritten,

SKL=nkT1 L-!(V/~/3) ~KL+PFkKFkL (1.2.12 c)
3 ~/3

9



where SKL is the second Piola Kirchoff stress, p the pressure and FkK the deformation

gradient. As shown in Wu and Van Der Giessen (1993) and further on here the eight chain

model tends to be rather soft compared to the exact solution to Eq. 1.2.2.

The solution proposed here yields Arruda and Boyce’s eight chain model as a first

approximation and becomes closer to the exact solution as terms are added. The method

applies a Taylor series expansion about ~,2 = I1 / 3 tO any function of ~, such as Eq. 1.2.8

yielding:

1 [ ~2W(~,) I12

t

10

As noted before, the stretch ~, = "x/I-1

I1 41 [O3W(~-)] ’ r~2 113 1[o4w(~’)]

(~2...~.)

(1.2.13)

3 (or ~2 - Il / 3) in 8 orientations of the spherical

coordinates (0,~) of the Lagrangian principle coordinate system where the direction

cosines have the following values:

(sin 0 cos ~, sin 0 sin ~, cos O) = (4- 1H3-, 4- 1/v~-, 4- 1/’~)

The energy w(~,) could have been expanded about ~, = 1 but more terms would 

necessary to get good results. Now the stretch can be expressed in terms of the spherical

coordinates by the following:

~.2(O,¢) = MK CKL ME ~,~ si n O cos ¢ + ~2sinOsin¢ + ~2 cos e
(1.2.14)

where MK are the direction cosines, CKL is the Green’s strain tensor in the principle

coordinate system and ~,i2 are the i th principle stretches. Dropping the error term (last term)

in 1.2.13, and substituting it into 1.2.5 gNes,
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3
0 0

+

+

(1.2.15)

The only dependence on orientation possessed by Eq. 1.2.15 is due to the ~, terms;

therefore, only these terms need be integrated over orientation space (unit sphere). Using

1.2.14 the following integrals are evaluated:

2~

~ff sin 19 dO d~ = 1
0 0

(1.2.16)

2E

1 ff ~2 sin ® dO de = ~’~ + ~23 + ~’~ ’ I-!-13

0 0

(1.2.17)

1 ff~4

1(3~,14+3 4 4+~,~ 2..t.~ 2 2~23)sin O dO d~ = ~’2 + 3 ~’3 ~’2 ~"3 + ~2
00

=1(3121-412) (1.2.18)
2n

1 fl)~6sinOdOd~=l(2()~6+)~6÷)~63)+3(~+~,~+~.~)(~,~+~.2+~.~)+
4re

0 0

2~ ~.~ ~.~)- 1-!5-(5 I]-1211 I2+8 I3) (1.2.19)

Using 1.2.16 - 1.2.19 the following integral identities are evaluated:
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(1.2.20)

2~

1 ff (~,2_ ~)2 sin 0 dO dO = ~ (I 2- 3 I2)
4n

0 0 (1.2.21)

2~

4~ff (~’2- ~)3 sin 0 dO de = 94-~(2 I]- 9 I112 + 27 I3)
0 0 (1.2.22)

Substituting (1.2.8) into (1.2.15), taking the appropriate derivatives and using the identities

given by (1.2.20) - (1.2.22), Eq. 1.2.15 is integrated giving:

W(Ii,I2,I3) = NnkT [1 In 1 +(~(3s)’/2 + (t’/3")’~il- ~-~/37~2--~- .,, - 4"3" Tan-   ,(1 + 2 (h/3N)l/2) 

3 (2 (3 . )___33 
I~ 11---15 (1 - (I¢3.)3 2)2 (II - 3 ) + 7--0

(I1//3N)3 / 2 .+ 5 (II//3N)3 / 2

(1 -- (h/3N)3 / 2)3
(2119~+2711 ~I3)] (1.2.23)

Because of Eq. 1.2.20 the second term on the fight hand side of (1.2.15) vanishes. If the

rubber is considered incompressible the third invariant I3 in (1.2.23) may be set equal to 

The second Piola Kirchoff stress is calculated for isochoric deformations by the following

formula:

SKI, = 2 ( OW "~W
3W

~,’1 ~,,2--57-- + 5i- I1) 8KL- 2~2 CKL+ P FkK Fu" (1.2.24)

Where p is the pressure and FkL is the deformation gradient. Substituing Eq. 1.1.23 into

Eq. 1.2.24 and taking the derivatives with respect to the invariants gives the third order

approximation for the second Piola Kirchoff stress,



SKL= G[
1

(1 - (I/3N)3/e)

(/

+ ’01 + 3 ) (1 - (%)3[2)2
(Iy3N)3

(I1- (l_-t- +

13

1__70 ( !II/3N) 

/2 12.(I1/3N)2.25 (ll/3Ni~../ (211 -- 9 !2 q. 27 )+ 2@0’ (-1"2 (I1//3N)3/2)3 /

(1 - (tl/3N)3 / 2)4 11
×

I2 ~132)]
i 5~i [. 65 (I1//3N)3 / 2 -- 58 (I1/3N)3

FkL( - 11 [1 + 18 ~ -81 g~L+G
(1 - (’/3N)3/2) 3 CKL + P FkK

(1.2.25)
I

/
Where G - n k T and n is the number of polymer chains per unit volume. Disregarding the

/third order contribution of the last/erm on the right hand sides of 1.2.23 (and 1.2.15), the
i

second Piola Kirchoff stress is c~culated using 1.2.24 to be:

,/
SKL= G[ 1 +3~) (’1/3N)3/2 

( 1 - (h/aN)3/2) + 1-~ (I1 I1 (1 -- (ll/3N)3 / 2)2

+901-3 ) (1_(i1/3N)3/2)3 ~SKL+G~I1 (1--~2)2 CKL+PFkKFkL

(1.2.26)

Eq. 1.2.25 represents the second order approximation of the stress. The first order

approximation is merely the first term on the right hand side of 1.2.25 along with the

pressure contribution,

SKL=G[. 1 1
FkKFkL

( 1 - (h/3N)3 / 2) I~)KL + P
(1.2.27)

Which is seen to be the same expression as that from Arruda and Boyce’s method (Eq.

1.2.12) after the approximation for the Langevin function is used (1.2.7). Eq. 1.2.25 

rather formidable, but the second approximation given by Eq. 1.2.26 is not too complicated



and is easy to implement in a finite element procedure since it is a function of the invariants.

Ogden’s method and the three chain model (Eq. 1.2.10) require derivatives of the principle

stretch with respect to the strain tensor to give the principle coordinate directions which

makes them difficult and inefficient for finite element formulations.

The efficacy of the approximation methods is evaluated. An adaptive numerical

integration scheme was used to get highly accurate approximations of the stress from Eq.

1.2.9. The details are described in Appendix A. The adaptive numerical integration gives

results to an arbitrary degree of accuracy and hence will be considered the exact solution.

Comparison of results for uniaxial loading (see Fig. 1.2.4 a) using the proposed series

approximations, the exact numerical solution and the three chain model are shown in Fig.

1.2.5. The material’parameters G = 0.273 and N = 75 were used. The stress."f", represents

the force per undeformed area such that f[ = Crl/~l. Fig. 1.2.5 shows that the 3 chain

model (1.2.10) is clearly too stiff. The first, second and third order approximations are

given by (1.2.27), (1.2.26) and (1.2.25) respectively. Up until = 4, thefirs t, second

and third order approximation schemes are coincident. For 4 < ~1 < 7 the first order

approximation begins to deviate considerably from the exact solution whereas the second

and third order approximations are close to the exact. For ~1 > 7 the series approximations

diverge from the exact solution. Although it should be noted that these results are at a

relatively high strain since the limiting strain is Xl = ~--- 8.66.

14

(a)

Fig 1.2.4 (a) Uniaxial tension (b) Equibiaxial tension (o2 
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In Figs. 1.2.6 and 1.2.7 uniaxial and equibiaxial data (Fig. 1.2.4) from James et.

al. (1975) is simulated using the exact numerical solution and the series approximation. The

stress "f’ is the force per undeformed area such that f = CYl/)~l for uniaxial tension and f 

~2/~,2 for equibiaxial tension (cf. FiD 1.2.4 b). The material parameters G = 0.4 and N 

50 were used to model the data. Good fits to the uniaxial data in Fig. 1.2.6 are acheived by

the second and third order methods. Again the first order method tends to be too flexible (=

20% error at )q = 5). The second and third order approximations are again very close to the

exact solution for equibiaxial tension. For both uniaxial and equibiaxial tension, the second

order approximation is nearly as good or better than the third order approximation. It is

seen that the equibiaxial stretch data in Fig. 1.2.7 cannot be fitted using the classical theory

and its approximations. This is the failure of the classical theory. In Section 2 an

entanglement model is developed which seems to give good fits to the experimental data.
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-- "exact" numerical integration /

-- -- - 3rd order approximation /

..... 2nd order approximation /

1st order approximation (8-chain)
/ ’/ /~-

..... 3-chain /" /j.’~

I I I I I I
1 2 3 4 5 6 7 8

Fig. 1.2.5 Force per undeformed area f versus stretch for uniaxial tension. The
three different approximation techniques are compared to the "exact" numerical
integration. The material parameters G = 0.273 and N = 75 were used.
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Fig. 1.2.6 Force per undeformed area f versus stretch for uniaxial tension. The
three different approximation techniques are compared to the "exact" numerical
integration. The experimental data is given by James et. al. (1975). The material
parameters G = 0.4 and N = 50 were used.
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Fig. 1.2.7 Force per undeformed area f versus stretch for equibiaxial tension.
The three different approximation, techniques are compared to the "exact"
numerical integration. The experimental data is given by James et. al. (1975).
The material parameters G = 0.4 and N = 50 were used.
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2. ENTANGLEMENT MODEL FOR RUBBER ELASTICITY

¯ 2.1 Introduction

In the classical theory of rubber elasticity, chemical crosslinks deform affinely and

the polymer chains between the crosslinks stretch according tothe relative displacement of

the crosslinks. The polymer chains are otherwise unaffected by the surrounding network. It

is apparent that this theory is insufficient in characterizing much Of rubber behavior. For

example, it was shown in Figs. 1.2.6 and 1.2.7 that the classical theory could match

experimental data for uniaxial tension, but could not additionally simulate equibiaxial

tension data at very large stains. There are many other theories of rubber elasticity, but

most do not consider effects due to finite extensibility of the polymer chains.’

One of the first attempts to modify the classical affine network model of rubber

elasticity was the phantom network model (James and Guth, 1947; Mark and Erman, 1988)

in which the crosslinks (except on the surface) were allowed to fluctuate in time without

being hindered by the neighboring chains (hence the term phantom network). This theory

yielded the same form for the free energy as the classical theory along with a front factor

which depended on the functionality of the network (i.e. tetrafunctional):

AA =f k T (~12 + ~22 + ~32 - 3)

where AA is the difference in free energy and f is the front factor. The crosslinks deformed

affinely in the average but the configurational entropy was increased due to lack of

constraint. Flory (1977) claimed that the junctions could not fluctuate freely because of the

topological restraints of the surrounding network. He proposed the so called constrained

junction theory.

Rheologists have suggested that deviations from classical theory may be due to

topological constraints on the chain itself as opposed to just constraints on junction

fluctuations (Higgs and Gaylord, 1989). Edwards (1977) and Doi and Edwards (1978)



were among the first to model the constraining effects of the surrounding molecules on a

polymer chain. Doi and Edwards, in work pertaining to polymer melts, argued that the

polymer chain was confined to a tube like region or a ’cage’ and fluctuates about a primitive

chain (Fig. 2.1.1).
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(b)

Fig. 2.1.1 (a) Chain confined to cage formed by surrounding molecules. (b) The slip 

model. The polymer molecule is shown as the solid line, the primitive chain is shown as

the dotted line and primitive chains of surrounding molecules are shown as dots.

The primitive chain is defined as the average location in time of the chain atoms. It is

assumed that the polymer chain remains inside a tube or cage like region formed by the

surrounding primitive chains, since thepolymer molecules cannot penetrate each other. The

cage reduces the number of allowable configurations of the polymer chain, whereas in the

classical theory, the polymer Chain is allowed to attain all configurations between

crosslinks. When the rubber or melt is deformed, it is assumed that the primitive chain is

deformed affinely. To simplify the problem, Doi and Edwards introduced so called slip

links to capture the topological constraints. The polymer chain is allowed to move freely

between slip links. The portions of the chain between slip links are considered subchains

and it is assumed that the slip links deform affinely. In the course of deformation, the

number of polymer segments between slip links varies such that the tension in each

subchain’of a given chain is equivalent. This is called chain equilibration by Doi and



Edwards. Marrucci (1979) and Graessley (1981) applied this slip link model to crosslinked

polymers. In Marrucci’s interpretation, the slip links are just trapped entanglements and the

distance between slip links can be defined as the distance between entanglements.

2.2 Development of the Entanglement Constitutive Model

19

The slip link model was originally derived for the Gaussian range of deformations

butcan be easily generalized to the non-Gaussian range. In the following, a derivation

along the lines of Marrucci’s will be given to incorporate the non-Gaussian behavior into

the slip link model. The main assumptions in the theory are:

a) The tension in each subchain is the same for all subchains of a given polymer molecule.

b) All network junctions, either crosslinks or entanglements (or slip links), move affinely

with the imposed deformation.

Fig. 2.2.1 (a) shows an entangled chain in the undeformed state. The chain has crosslinks

at points A and E and trapped entanglements at points B,C and D. Upon deformation (Fig.

2.2.1 b) points A,B,C and D have deformed affinely according to assumption (b) such that

line segments AB and CD have shortened and line segments BC and DE have lengthened.

A

B

C ¯

D

E

B !

D!

(a) (b)
Fig. 2.2.1 a) Entanglement network in undeformed configuration; b) in deformed
configuration. The polymer chain, shown in bold, has crosslinks at A and E and trapped
entanglements at B,C and D.
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In order for assumption (a) to be satisfied the number of links in subchains A’B’ and C’D’

have reduced while the number of links between subchains B’C’ and D’E’ have increased.

In the undeformed state it is assumed that all the subchains are of equal length ro and have

No statistical links (or monomers links). The undeformed subchain represents a random

walk of step length I such that ro = ~ 1. After deformation, the i th subchain (Fig. 2.2.2)

is of length ri and contains Ni statistical links.

D’

A’ / C’ E’
i th subchain

Fig. 2.2.2 i th subchain of polymer chain of length ri with Ni statistical links.

The polymer chain is composed of N statistical links and ns subchains such that:

as
Y~ Ni = ns No = N (2.2.1)
i=1

The mean square length of a subchain with Ni sublinks in a relaxed state is "~-~-~ 1 and the

length of the stretched chain is

ri = Ai "f-~l (2.2.2)

where Ai represents the stretch of the i th subchain. Ai should not be confused with ~,i

which is the stretch of the i th line segment between the entanglement points¯ For example,

in Fig. 2.2.2 ~,i = B’C’ / BC where B’C’ is the affinely deformed line segment BC, while

Ai is the stretch of a subchain with Ni links which occupies B’C’. The force in the ith

subchain is described by the following relation (Treloar, 1972):

kT L-1 ri Ai ~ 1 Ai
fi=T (ri--i-~ax)=~ -L-l( Nil )= ~L-l(~ii)

(2¯2.3)
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where k is Boltzmann’s constant, T the absolute temperature, 1 the length of the statistical

link and Lq is the inverse Langevin function. According to assumption (a) the force in all

the subchains is equal; therefore for all i,

Ai
fi = f and ~= K (constant) (2.2.4)

",/Ni

It remains to relate the constant K to the continuum mechanics of deformation. Now using

Eq. 2.2.1 and Ai = ~]Ni K from Eq. 2.2.4, the cumulative length of the subchains is:

ns ns ns
Y. ri = EAi~]--~-I= E

i= 1 i= 1 i= 1
KNil=KnsNol (2.2.5)

The undeformed length between line segments was assumed to be x/-~o 1; therefore,

according to the affine deformation assumption ¯

ns ns
Y. ri = E ~,i X~o I = ~avg ns’~o 1 (2.2.6)
i=l i=l

where ~avg is the average stretch over all sublinks. Because only uniform deformation is

considered (i.e. the deformation gradient is independent of position), the stretch ~,i is only

a function of the spherical coordinates 0 and ~. The average stretch can be described by:

ns 1 firn~avg : E ~,i -- : E ~,(Om,~Im) ns

i=l ns m=l
(2.2.7)

where tim represents the number of subchains in the (0m,0m) direction and N is the total

number of orientations. Now if it is assumed that the chain is highly entangled such that

there are many subchains and that the undeformed distribution of subchains is isotropic the

following approximation can be made:

(2..2.8)

where the integral is over the unit sphere and the variables O and ̄  represent the

orientation of the undeformed line segments. It seems reasonable that 2.2.8 is still a good
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approximation even when the chain is not highly entangled; say for instance a chain

containing three subchains in the directions of the principle axes of stretch. The operator (.)

is standard notation for the average quantity over orientation distribution space such that:

(~) = ~ ~(®,~) sin ® d® (2.2.9)
0 0

Using Eq. 2.2.5, 6, 8 and 9 gives:

or

K ns No 1 = (~,) nsq-~o (2.2.10)

K = (~’) (2.2.11)

¯ Therefore, the force in the chain can be calculated using Eq. 2.2.3, 4 and 11 such that:

f= ~]~ L-l(~oo ) (2.2.12)

It remains to find the stress versus strain constitutive relation from Eq. 2.2.12. The easiest

way to do this is to derive the free energy function for the solid by summing the

contributions from all the polymer chains. The free energy of the i th subchain with length ri

force is defined by the relation:
ri

Wi =ffi (ri)dri
0

Using ri = Ai ,f-~-I from Eq. 2.2.2 and equating Eq. 2.2.4 and 2.2..11 gives:

(2.2.13)

Ai- ~/Ni(~,) and ri= Ni
"~o ~oo(~’)1 (2.2.14)

Using Eq. 2.2.12, 13 and 14 and the fact that fi = f gives the free energy of the i th subchain

in terms of (~.).

f (z)
wi = kT Ni L-t( (2.2.15)

o
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Using Eq. 2.2.1 and 2.2.15, the free energy of all the subchains is summed t9 get the free

energy for the jth polymer chain:
0,>/

ns
~ (~L) (~,>)wj chain = 5", wi = kT ns No L-l( ~ ) d(-~7 (2.2.16)

i=1 J ~No ~No
0

The force in the polymer chain (Eq. 2.2. i2) is not dependent on the orientation (i.e. 

spherical coordinates) of the chain (unlike the classical theory) and hence all the polymer

chains have the same force. The total free energy W is found by summing the contribution

of all n polymer chains:

n

Zw’chain =G No f L,l( <%> (%> W((%>) 
~oo ) d(~oo’i=l

0

(2.2.17)

where G = n ns kT. To calculate the stress tensor it is necessary to take the gradient of the

free energy with respect to the Green’s Strain tensor Cij as such:

aw aw
OCij O(~L> ~Cij

(2.2.18)

Now X(O,q~) = qMi Cij Mj, where Mi = Mi (O,~) is the unit vector along a subchain 

the undeformed reference configuration as defined in Eq. 1.2.11. Using Eq. 2.2.9, the

derivative of the average stretch with respect to the strain is taken as follows:

OCij
1 j~ ~/Mk Ckl Mm sin® dO dq~ = 1__

f l
M i Mj sinO dO dq~

4g 4g 2 %,
f~

(2.2.19)

Using Eq. 2.2.17,18 and 19, the Cauchy stress for an incompressible rubber is found to

be:

aW (X) < ~ > 3kl (2.2.20 
(Ykl -- 2 Fki aCi-----7- FIj + p Ski -- G ~ L-l( ~o ) Fki ~ FIj + p
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The incompressibility assumption can be relaxed by adding a hydrostatic (bulk)

contribution to the strain energy formula Eq. 2.2.17. An alternate form of Eq. 2.2.20 (a) 

given:

u u;)+pSk 
= G ~ L’I( ~o ) )~ mk m! + p 5kl~ (2.2.20 ~b)

where U’k - Fki Mi = )~ mk is the deformed unit vector Mk such that % = (U’k u ’k)1/2 and mk

is the unit vector along the deformed subchain.

As with the classical theory, the entanglement model relies on two parameters to model

elastomer behavior. In the entanglement model the parameter G depends on the total

number of subchains and temperature and No is the average number of crosslinks between

entanglements.

2.3 Verification of Entanglement Model

Numerous investigators have compiled ample experimental data for rubber strained

into the non-Gaussian region of behavior (Treloar, 1944; Obata, 1970; Jones and Treloar,

i975; James et. al., 1975; Vangerko and Treloar, 1978; etc.). Results from these tests

show that elastomers strained into this region share much qualitative behavior, but that the

classical theory using Langevin statistics is insufficient in simulating the experimental data

(Treloar and Riding, 1979; Wu and Van Der Giessen, 1993; etc.) In particular, Treloar and
b

Riding (1979) showed that for chosen values of G and N the classical theory could fit

uniaxial tension data but not additionally fit the uniaxial compression data. For the class of

incompressible materials (which rubber is often assumed to belong) the equibiaxial tension

test is equivalent to the uniaxial compression test. Plots which show the tensile stress from

the equibiaxial tensile test, as opposed to the uniaxial compressive force, tend to magnify

the discrepancy between the classical theory and the actual behavior. As seen from the

results of the classical theory shown in Fig. 1.2.7, the equibiaxial tension appears to be



grossly underestimated. The entanglement model using Eq. 2.2.20 is used to Simulate the

same experimental data (James et. al., 1975) for uniaxial tension and equibiaxial tension

along with additional pure shear data (see Fig. 2.3.1). Analytical solutions of Eq. 2.2.9

and 2.2.20 are given in Appendix B for uniaxial and equibiaxial deformation. For pure

shear deformation Eq. 2.2.20 (see also B. 10)was integrated numerically using the

procedure outlined in Appendix A.

I

or1=0 [ -----.-~ and L3= 1
(~2 (~2"s ¯ ¯

Fig. 2.3.1 Pure shear deformation

Eqs. B.4, B.6 and B. 10 are used to simulate uniaxial tension, equibiaxial tension

and pure shear data given by James et. al. (1975) and Treloar (1944). The results 

shown in Figs. 2.3.2 and 2.3.3 in terms of the force per undeformed area f and stretch.

The uniaxial tension is in the 1 direction such that f = crl/’L] (cf. Fig. 1.2.4 a) while for the

equibiaxial and pure shear deformation the stress plotted is in the 2 direction such that f =

(ra/~,2 (cf. Fig. 1.2.4 b and Fig. 2.3.1). The following material parameters were used to 

the data:
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Data from James et. al. (1975) Data from Treloar (1944)

G = 0.53 G = 0.4

No = 20 No = 22

Table 2.3.1

The entanglement model appeals to givegood results for the different deformations for

both James et. al. (1975) and Treloar’s data. In order to illustrate the effect of the finite

extensible chains, Fig. 2.3.3 also shows a uniaxial curve for the entanglement model with

infinitely extensible chains, i.e. No -> oo. Further analysis is made in Section 2.5
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Fig. 2.3.2 Force per undeformed area for uniaxial tension, biaxial tension, and pure
shear. The results by the entanglement model Eq. 2.2.20 are given for G = 0.53
and No = 20. The data is taken from James et. al. (1975).
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No = 22. The data is taken from Treloar (1944).
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2.4 Approximation of Constitutive Model

The form of the constitutive relation Eq. 2.2.20 is not amenable to general

boundary value problems due to the integral over the orientation distribution space.

Methods similar to those introduced in Section 1 are used to find a viable approximation to

Eq. 2.2.20. The first step in providing the approximation is to get an approximation for the

average stretch. A Taylor series expansion about the stretch ~2 = I1 / 3 is used as follows:

3 3

= "(iT~+I (~--1-1/2 (~’2(0’*)-~ -)+1 (~-3-)-3’2(~2(®’*) -) 2 (2.4.1)

where ~,2(O,~) = Mi Cij Mj where Mi = Mi (®,~) are the direction cosines and Cij is the

Green’s strain tensor. The approximation of Eq. 2.4.1 is shown in comparison to the

exact value of ~,(®,~) with ̄  = 0 (i.e. x-y plane in Fig. 2.4.1) for uniaxial extension ~1

in the 2D parametric plot of Fig. 2.4.2 (a).

Z

Y
Fig. 2.4A Coordinate system used in Fig. 2.4.2 and 2.4.3

The unusual form of the plot (a figure eight) is due to the fact that the parameters (O,~)

refer to the undeformed configuration. Using the transformation ~,-2(0,~) = mi B~J mj,

where B]] is the inverse Finger tensor and mi = mi(0,~) are the direction cosines in the

deformed coordinates, in the first part of Eq. 2.4.1 gives the approximation for ~,0,~) and
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yields the more familiar strain ellipsoid plotshown in Fig. 2.4.2 (b). Similar type plots are

shown in Figs. 2.4.3 (a) and (b) for simple shear (y= 2) in the x-y 
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 aP i°x
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Fig. 2.4.2 (a) 2D parametric plot of ~,(®,~)

in x-y plane for uniaxial extension in the x

direction.
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Fig. 2.4.2 (b) 2D parametric plot of ~,(0,~)

in x-y plane for uniaxial extension in the X

direction.
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Fig. 2.4.3 (a) 2D parametric plot of k(®,~)

in x-y plane for simple shear in the x direction.
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Fig. 2.4.3 (b) 2D parametric plot of ~,(0,~)

in x-y plane for simple shear in the x direction.

Results shown in Figs. 2.4.2-3 show that Eq. 2.4.1 is a good approximation. To get the

approximation for the average strain (~), Eq. 2.4.1 is integrated over the orientation space

as such:

i42 +
0 0

l JJ ’(~2 _ )2 dO d~ (2.4.2)

32g
0 0

Substituting the integral identities given by Eqs. 1.2.20 - 1.2.22 into Eq. 2.4.2 gives the

following for the average strain:
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I2
(X) --- 1-~ (31ll/2+ ) (2.4.3)

Because the second integral in Eq. 2.4.2 vanishes, Eq. 2.4.3 provides a high order

approximation in a simple form. In figure 2.4.4 (a), the approximation Eq. 2.4.3 

compared to the exact solution Eq. B.3 for uniaxial tension and compression. In Fig. 2.4.4

(b), Eq. 2.4.3 is compared to the numerical quadrature solution of Eq. B.9 for pure shear

deformation where X is the maximum principle stretch.

4

3

--exact
..... approximation

, .,..~1~,

4

3
t/--exact

..... approximation

0 1 2 3 4 5 6 0 1 2 3 4 5
X

Fig. 2.4.4 (a) average stretch (~) for uniaxial Fig. 2.4.4 (b) average stretch (~) for 

deformation, deformation where ~L is the maximum stretch.

The approximation for the average shear gives good results over a wide range of strains.

The tensor in Eq. 2.2.19 can be approximated by taking the appropriate derivatives of Eq.

2.4.3 and the derivatives of strain invariants as follows:

~)()~) c](~,) c311 o3(~,) o~12 ~ (11_1/2_ 3
c)Cij - ~Ii ~)Cij + t)I2 t)Cij - 5

12

[15/2 ) 5ij - ~ I1"3/2 Cij
(2.4.4)

Substituting Eq. 2.4.4 into Eq. 2.2.20 (a) and making the appropriate tensor

multiplications gives the approximate form for the Cauchy stress tensor shown in 2.4.5:

(~,) (~_ 3 12 ~/-3 i1_3/2 B2)t~ij=G~° L’l(~oo) (11-1/2- 5 I15/2) Bij - ij +P~ij (2.4.5)



where Bij is the Finger tensor and Eq. 2.4.3 is used for (~,). Using the approximation for

the inverse Langevin function (Eq. 1.2.7) gives a closed form expression entirely in terms

of strain and strain invariants:

3 G ~- (3Ill/2+
I2

113/----’---~ )

~iJ= _ ~ 1 ~ 12 ]31
~,~O10 (3Ill/2+ ~ )

(2.4.6)

Eq. 2.4.6 is used to model the same data given by James et. al. (1975) for uniaxial, biaxial

and pure shear deformation. The results are shown using the force per undeformed area as

in Fig. 2.3.2. For the results in Fig. 2.4.6 a slightly different value of G (0.50) than that

of Fig. 2.3.2 (0.53) "was used to get the best fit of the data. The following material

parameters were used to fit the data using Eq. 214.6 (compare to Table 2.3.1).

2 "

(~_~__(11_1/2_ 35 I1-3-~)I2 Bij- 2~/3II-3/2Bij]+p~ijT
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Data from James et. al. (1975) Data from Treloar (1944)

G = 0.50 G = 0.4

No = 20 No = 24

Table 2.4.1

James et. al. (1975) provides additional data for biaxial deformation for the same rubber

sample. The biaxial tests (Fig. 2.4.5) were made such that ~,2 was varied for different

values of ~,1 and the family of curves are plotted as (~1 - ~2) versus ~,2 (Fig. 2.4.7).

Again, the same rubber was used by Jameset. al. (1975) for the uniaxial, equibiaxial, pure

shear and biaxial tests (Figs. 2.4.6 and 2.4.7), hence the same material parameters were

used.

O1

Fig. 2.4.5 Biaxial deformation
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Fig. 2.4.6 Force per undeformed area for uniaxial tension, biaxial tension, and pure shear.
The results by the entanglement model approximation Eq. 2.4.6 are given for G = 0.53 and
No = 20. The data is taken from James et. al. (1975),
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Fig. 2.4.7 The principle Cauchy stress difference for biaxial loading. The solid lines
represent results by the entanglement model approximation Eq. 2.4.6 using G = 0.53 and
No = 20. The data is taken from James et. al. (1975).
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Fig. 2.4.8 Force per undeformed area for uniaxial tension, biaxial tension, and pure shear.
The results by the entanglement model approximation Eq. 2.4.6 are given for G = 0.4 and
No = 24. The data is taken from Treloar (1944).

The data given by Treloar (1944) is also modeled using Eq. 2.4.6 with results shown 

Fig. 2.4.8. The material parameters used are shown in Table 2.4.1. This time a slightly

different value for No was used than that used in Section 2.3. With Eq. 2.4.6, No = 24

was used. With Eq. 2.2.20, No = 22 was used.

The different values of G and No used to model the experimental data can be

considered very small. It is concluded that Eq. 2.4.6 in terms of invariants and strain is

successful in approximating Eq. 2.2.20.

2.5 Analysis of Results from Entanglement Model

From comparison of results by the classical theory Figs. 1.2.6 and 1.2.7, the

entanglement model shows better quantitative agreement for the equibiaxial tension data



particulary at the higher strains. The classical theory tends to predict much lower values of

stress in equibiaxial tension not only for the data shown (James et. al. 1975), but for all

data surveyed (Treloar and Riding, 1979; Obata, 1970; Jones and Treloar, 1975; Vangerko

and Treloar, 1978; etc.). In fact results shown in Figs. 2.3.3 and 2.4.8 for Treloars data

show that the entanglement model tends to over estimate the equibiaxial stress. Results for

the additional biaxial data (Fig. 2.4.7) show that the entanglement model is valid over 

wide range of loading conditions. Results from Treloar and Riding (1979) show that the

classical theory gives poor quantitative results at low values of ~,2 for biaxial deformation

test results like those seen in Fig. 2.4.7.

It is particularly impressive that a two parameter model (G and No) is capable 

modeling such a br6ad range of data. In all the results shown using the entanglement

model, G and No are merely chosen to best fit the uniaxial data and the remaining test data

fit naturally. In fact G is chosen by matching the data at small strain and No is chosen to

model the upturn at high strains. In James et. a1.(1975) third and fourth order Mooney

Rivlin type strain energy functions with 6-8 determinable coefficients were used to model

the biaxial data shown in Fig. 2.4.7. Values for the coefficients were found by least square

fits of the biaxial data and the results were comparable to that given by the entanglement

model. But it was further shown that in uniaxial tension beyond the value of ~,1 = 3.5 the

results of the Mooney Rivlin model were poor. Unreasonable results may occur whenever

a strictly phenomenological model is deformed beyond the range of values and outside the

types of loading used to find its ~coefficients.

Ogden’s method also relies on six determinable parameters to get good results.

Moreover, Ogden’s method is consistent with the Valanis-Landel hypothesis that the strain

energy function is expressible by a sum of separate but identical functions of X1, X2, and

~3 i.e.

W(~.I, ~2,~.3) = w(~.l) + w(~.2) + w(~,3) 
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The difference in principle stresses Using this form of free energy is found by Eq. 2.5.2

such that,

CYl - ~2 = ~,1 w’(~,l) - ~2 w’(~,2) (2.5.2)

Constitutive laws which are consistent with the Valanis-Landel hypothesis and, hence Eq.

2.5.2 will yield parallel ~l - or2 curves for biaxial stretch loading of the type seen in Fig.

2.4.7. The strain energy for the entanglement model is not separable as in (2.5.1), but for

the range Of stretches 1.3 < ~,1 < 3.5, 0.2 < ~,2 < 3.5 the entanglement model gives results

which are close to parallel. Biaxial data from Vangerko and Treloar (1978) over a broader

range of stretches shows or1 - ~2 curves converging at very high stretchs suggesting that

the Valanis Landel hypothesis may be invalid at these high stretch ratios.

The entanglement model given by Doi and Edwards, Marruci and Gr/tessley and

generalized here for non-Gaussian deformations is admittedly crude. One of the objections

to the model is that the subchains between entanglements are considered fixed after

deformation has occurred. That is the number monomers (or statistical links) between the

subchain does not vary in time. In reality the chain wriggles back and forth across the

entanglement. More sophisticated hoop models (Higgs and Gaylord, 1990) and tube

models (Gaylord et. al., 1987) have been developed which consider this and other effects

but do not consider finite extensibility. Another objection to the model is the affine

deformation assumption for the crosslinks and entanglements. Again, a more sophisticated

model exists (Ball et. al. 1980) where non-afflne deformation is considered. The

entanglement model used here is an exaggerated case such that in the undeformed

configuration it is assumed that a given chain between crosslinks possesses an infinite

number of subchains oriented isotropically between entanglements. As mentioned in the

development of the model, it is more likely that a given polymer chain has a few subchains

oriented in a few directions between entanglements. Even so, the chain experiences

deformation in multiple directions. In the classical theory, the chain is only influenced by

the displacement of the crosslinks in a given direction and is not concerned with the
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deformation of the neighboring chains. From experimental evidence it may be assumed that

the exaggerated entangled state may be closer to reality than the chain oblivious to its

surroundings.
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3. CONSTITUTIVE EQUATIONS USING VIRTUAL WORK

In the case of inelastic deformations, the stresses, in general, cannot be determined

by the gradient of a free energy function and an alternative method must be used to derive

the macroscopic stress from the microstructure. The method developed here equates the

external virtual work of the macroscopic stress to internal virtual work of the

microstructural elements. It could beused to find the expression for the stress in polymer

networks, fiberous composites, crystal plasticity etc. such that the sources of internal

virtual work reflect the relevant mechanisms involved in the material. The expression for

the stress tensor arrived at using this virtual work approach is actually the same expression

used by rheologists. Rheologists develop their expression by a different approach.

Undeformed Unit Cell Deformed.Unit Cell
Volume = V Volume = v

Considering the unit cell above such that only homogenous deformations are

applied, the rate of external virtual work is given by:

~Wext = Gij ~3dij v (3.1)

where ~ij is the Cauchy stress, v is the deformed volume of the unit cell, and &tij is the

virtual rate of deformation gradient given by

_  vj/
~IiJ - ~ "2~ +~iiJ (3.2)

such that xi = xi(t) is the current coordinate position and vi is the velocity. It remains 

specify the internal virtual.
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Consider the segment of polymer chain or fiber in Fig. 3.1 in the current deformed

configuration. The current length of the fiber Ax = L 1o m where lo is the original

undeformed length, ~, is the stretch and m is the unit vector in the current direction of the

fiber. For convenience, it is assumed the force f = f m on each chain end is the same*.

The magnitude f depends on the stretch ~, and the stretch history such that f = f(~,).

5v(x) f = f m

~ = ~,lom

x/
i /. f

y x+A x

0

Fig. 3.1 Deformed fiber undergoing a virtual deformation

The rate of internal virtual work for the given fiber is defined as:

~Wfint = f" (~iv(x + Ax) - 5v(x)) (3.3)

where ~Sv is the virtual velocity¯ It is assumed that the chains or fibers deform affinely such

that the endpoints of the line segment are embedded in the continuum. Furthermore only

homogenous deformations of the fiber are considered; therefore,

¯

8f~Vi/5vi(x + Ax)-Svi(x)=~, )~’3xj’Axj (3.4)

Substituting, 3.4 into 3.3 gives:

* This assumption can be relaxed such that force-is different at each end amounting to a distributed force
acting alorig the length of the chain. In which case the element shown in Fig. 3.1 would be a differential
element and an integration along a total length would be necessitated. Furthermore, for fibers a moment and
a shear force could be incorporated at the end the element but is not necessary for a polymer chain.
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5W~nt = f ~, 1o mimj 5/3vii - f
/ ~xjJ - ~’ 1° mimj ~lij

(3.5)

Now ~Wfint (Eq. 3.5) represents the virtual work of one fiber of given orientation m.To

get the total amount of internal virtual work, the contribution of the virtual work of all the

fibers will be summed. It is recognized that all fibers with identical orientations in spherical

coordinates (0,q0) (cf. Fig, 3.2) will have the same stretch, stretch history and consequently

the same force.

X
2

x1
Fig. 3.2 Orientation of unit vector m

The number of fibers in a given orientation (0,q~) of the unit cell is given by the relation

(Van Der Giessen et al. 1993):

dnt = nt C(0,q0) V sin 0 dO dq0

(3.6)

where nt is the number of fibers per unit undeformed volume, C(0,q~) is the orientation

distribution function, and V is the undeformed volume of the unit cell. Using Eqs. 3.5 and

3.6 and integrating over all possible orientations the total internal virtual work is expressed

as:

= ff f(TL) i mn ~, 1o
0 0

~lin nt C(0,~) V sin 0 dO d~o

(3.7)

To satisfy the conservation of momentum, the external virtual work must equal the internal

virtual work i.e.
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~Wext = ~Wint (3.8)

Substituting Eqs. 3.1 and 3.7 into 3.8 yields:

2/[

(Yin
~)din v = nt 1o V It f(~) mi mn ~" ~lin C(0,qo) sin 0 dO dq9

(I /

(3.9)

It is noted that j = v / V, where j is the determinant of the deformation gradient, v is the

deformed volume and V is the undeformed volume. Since only homogenous deformation

gradients are considered Eq. 3.9 may be restated:

2~ /[

(6in - nt 1o 1Jr f(X) mi mn ~ C(0,q0) sin 0 d0 dq0) gYtin 
00

(3.10)

In general the virtual deformation gradient i~din is arbitrary; henceforth the Cauchy stress

can be wriRen:

l° +1t f(~) mi mn~’ C(0,q0)sin0 dO dqo~in= nt
00

, (3.11)

The polymer matrix also exhibits an additional resistance to volumetric change and in many

cases is treated as incompressible. In this case the admissible deformations are considered

isochoric such that virtual rate of deformation gradient i~)dii - 0. To apply this constraint,

Eq. 3.8 must be modified as such:

~W’ext - ~Wint + p (~in~lin - 0) "- 0

Where p is the undetermined Lagrange multiplier. Using 3.1, 3.8 and 3.12 gives:

(3.12)

2/[ /[

(frin - nt 1o lff f(k) mi mn k C(0,qo) sin 0 d0 dqo - P 5in) =0
00

(3.13)



Because of the Lagrange multiplier, the virtual rate of deformation gradient can again be

considered arbitrary such that,

tin = nt Io ~ fO~) mi mn )~ C(O,g~) sin 0 dOdg~ + p 
00

(3.14)

Eqs 3.1 1 and 3.14 are stated in terms of the variables (0,0) which represent the

current orientation of the deformed fibers. The initial orientation of a given fiber may be

represented by the spherical coordinates (O,O). As in Section 1, the deformed and

undeformed coordinates are interchangeable and their transformations can be stated as such:

4O

(0,~) = (0(O,O;t), 00(®,O;t)) (3.15 a)

(3.15 b)

dO dO = J dO dO (3.15 c)

where J is jacobian. The deformed orientation mi can be mapped to the undeformed

coordinates by the following transformation:

mi- 1 ~xi MK
~, 3XK

where MK are the direction cosines for undeformed orientation.

(3.16)

M = MK eK = sin O cos ̄  e 1 + sin O sin ¯ e2 + cos (9 3

Performing the transformation to undeformed coordinates on the integral 3.11 the

following results:

 xoff
Oin = nt 1o j OXK ~ f(~,) K ML C(O,~) J si n 0 dO

00

(3.17)

(3.18)
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Conservation of the number of fibers between the deformed and undeformed configuration

requires that C(0,0) sin 0 dO dO = C(O,O) sin O dO dO. Using (3.15 c) along with 

assumption that the initial distribution of the chains is isotropic, i.e. C(O,O) = 1/47r, yields

C(0,0) J sin 0 dO dO = (1/4r0 sinO dO dO. Hence, Eq. (3.18) becomes,

2/t, nff asia°
Oin = nt 1° j ~XK ~ f(~’) MK ML~, 4~ dO dO

00

(3.19)

The use of the deformed and undeformed orientations amounts to a Eulerian and

Lagrangian description. The second Piola Kirchoff stress can easily be extracted from 3.19

giving:

dO dO

(3.20)

Sometimes the force f(~,) is the gradient of a free energy function such that,

Now ~, = ~/MK ML CKL SO that,

f(~) - (3.21)

2 ~’ - MKML (3.22)

where CKL is the Green tensor. Substituting 3.21 and 3.22 shows that when f(~,) is the

gradient of a scalar function, the stress is the gradient of a scalar functional as follows,

sin°dodoSKL= nt 1° ~" ~KL 4re
00

2g g

_~_.~ff sin O
= nt 1o 2 ~0~) 4g

00

sinOdOdO= nlo2 3CKL
(3.23)



42

So, whether one obtains the stress from Eq. 3.20 or first obtains the free energy function

(hu) and then uses (3.23) (as was done for the elasticity models), the results are entirely

equivalent.
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4. VISCOELASTICITY MODELS FOR RUBBER

4.1 Introduction

The large strain viscoelastic models of rubber used by solid mechanics analysts

are purely phenomenological. More physically based models are examined which more

directly incorporate the effects of intermolecular friction, and the transient nature of the

forces and orientation of the polymer chains. Mechanisms which cause viscoelasticity in

polymer liquids (i.e. polymer solutions and polymer melts) are similar to those in solid

rubber. Hence, it will be instructive to present some of the concepts from polymer fluid

dynamics. Rheologists have developed complete theories for the viscoelasticity of

polymer Solutions and polymer melts. These theories can provide a spectrum of

relaxation times, the orientation distribution of the polymer chains and the constitutive

law relating the stress to the time history of deformation. Many assumptions are made in

these theories; therefore, they are only valid under very ideal conditions. For example the

theory for polymer solutions assumes that the polymer chains are of sufficient molecular

weight while very dilute such that the polymers chains do not interact. The reptation

theory for polymer melts is only valid for monodisperse conditions etc. Nevertheless

these theories are useful in relating certain underlying molecular mechanisms to

macroscopic observations and can be modified phenomenological to reflect more realistic

non-ideal conditions. The concepts used by rheologist for polymer fluids will be used

here to develop viscoelasticity models for solid rubber.

The first theory developed here is primarily concerned with relatively short

polymer chains in a highly crosslinked network. In this theory it is assumed that all the

chains in the network are crosslinked such that there are no dangling or unattached chains

which can affect the viscoelasticity of the rubberl This viscoelastic theory provides a time

dependent ’backstress’ which can be appended to the elastic stress given by the

entanglement model developed in Section 2.



Another theory which incorporates effects from the uncrosslinked polymer chains

is presented. The theory is an extension of the reptation model for polymer melts to solid

rubber and is consistent with the entanglement model presented in Section 2. This model

appears to give better correlation to available data from constant strain rate experiments.

Not very much attention has been paid to finite strain viscoelasticity of

solid rubber in the literature. This is especially true for rubber where effects due to finite

extensibility are apparent (i.e. uptum in stress verses strain curves). Phenomenological

theories have been put forth by many authors. One reason that a comprehensive

molecular theory has not been developed is that the problem is rather complex (the

elasticity problem is hard enough!). In the following development, concepts from the

theology of polymer fluids are introduced. These concepts will clarify the origins of

visoelasticity and motivate the viscoelastic model developed here.
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4.2 Topics from Rheology

A typical uniaxial relaxation curve for a gum rubber (i.e. unfilled) is shown in Fig

1. The first theory attempts to describe the rubber as it goes from the glassy region to the

rubbery region of behavior. As seen from Fig. 4.2.1 for a small step strain (---5%) the

stress goes from lxl09 dynes/cm2 (100 MPa) to lxl06dynes/cm2 (0.1 MPa). At the very

beginning of the glassy region for small strains, much of the deformation is due to the

change in bond lengths in the polymer chain. Because these bonds are very strong, the

material can be very stiff. The molecular chains do not find their equilibrium distribution

immediately after deformation because friction from surrounding molecules inhibits their

motion. For relaxation tests with strains higher than 5%, the bonds will break and or the

chains atoms will flow immediately after deformation (Ward 1983). After some time has

passed thermal motion of the chain atoms causes the polymer chains to reconfigure so

that the high stress (100 MPa in Fig. 4.2.1) subsides (Ward,1983). This phenomenon

occurs during the glass to rubber transition seen in Fig. 4.2.1. After substantial time has
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elapsed the polymer chains will find their equilibrium configuration which corresponds to

maximum entropy. In order to model the viscoelastic (glass to rubber transition) the

intermolecular friction is taken into account. This can be done in different ways

depending on the nature of the polymer (i.e. rubber solid, polymer liquid, polymer melt).

10.00

8.00

6.00

4.00

2.00

’glassy glass to rubber
transition (viscoelastic)

V

rubbery (elastic)

/ ±1

-2 -1 0 1 2 3
log t (seconds)

Fig. 4.2.1 Uniaxial relaxation curve for rubber after 5% step strain

(taken from Ferry 1981).

4

Typical relaxation curves for a dilute polymer solution and a polymer melt in

shear are shown in Fig. 4.2.2. Dilute polymer fluids are composed of solvent (e.g.

decalin) and suspended polymer chains (e.g. isobutylene). A polymer melt is made up 

uncrosslinked polymer chains and contains no solvent. The degree of polymerization can

range from tens to thousands of monomer units per polymer chain. At short times both

polymer fluids and rubber (Fig. 4.2.2) have similar types of behavior. The plateau

behavior seen by the polymer melt is due to the entanglements encountered by polymer

chains. The region where the stress decreases rapidly is called the terminal zone. As will

be described further, rheologists use the Rouse theory to describe the behavior of the



fluids at short times and reptation theory to describe the plateau and terminal behavior of

the polymer melt.
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Fig. 4.2.2 Typical relaxation master curves for a dilute polymer solution

and a polymer melt in shear.

4.2 a Polymer Fluids

¯ r

Over the years rheologists have made substantial efforts in attempting to

characterize the viscoelastic behavior of polymer solutions and melts. In fact the

viscoelastic behavior of dilute polymer solutions is well understood. Under certain

conditions the Rouse bead spring model can be used for this type of solution. For

example, a long polymer chain (Fig. 4.2.3 a) can be modeled by a series of springs

connected by beads (Fig. 4.2.3 b). Each spring is called a subchain and may consist of 

hundred or so monomers. The number of beads and springs used to discretize the chain is

usually determined heuristically. An equation of motion is derived for the bead chain

molecule. Solving this equation yields the constitutive law for the polymer liquid.
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The configurational distribution function ~l/(X1, X2 .... Xi .... XN) (or ~.(x) for short)

describes the likelihood that a given polymer chain (bead spring model that is) will be 

some configuration Xl, x2, ... xi .... XN where xi is the position vector for the i th bead (See

Fig. 4.2.3 b). The function ~(x) is normalized such that the integral of ~ over 

orientations xi is equals 1.

f lq/(Xl,X 2 XN) dxldX2 dXN = 1

Since the solution is assumed to be very dilute, the polymer molecules are treated as

though they do not interact and are only affected by the surrounding solvent.

Consequently, the configurational distribution function for a given polymer molecule is

independent of the other molecules. The configuration of a crosslinked polymer chain is

not independent of surrounding chains and is hence more complicated to analyze.

(4.2.1)

xi

(a)
Y

Hy ~r (odyjiXJ)Drag 

on the jth Bead(b)

Fig. 4.2.3 (a) A polymer chain suspended in fluid. (b) The bead spring

¯ representation of the chain. Beads 1 ton are connected by springs.



48

Fluid flow produces viscous forces on the chain atoms. The hydrodynamic drag

experienced by the subchain atoms is lumped at the beads. In fig. 4.2.3 (b), the thbead is

denoted by its position vector xi. If the fluid is subjected to a homogenous velocity

gradient n, the fluid velocity at xj is defined by n. xj. Hence, the viscous force on the jth

bead is fJdrag = ~1~- Xj - :~j) where ~ is the drag coefficient for the bead (usually

considered a sphere).

Since the subchains are assumed to be sufficiently long, they are treated as

Gaussian chains i.e. linear springs. Therefore, the force by the springs on the i th bead is

fispring = 3--~2T (Xi+l- Xi)- 3-~2T (Xi- Xi-1)= 3-~2T (Xi+l- 2 Xi + Xi-1)

Where k is Boltzmann’s constant, T is the temperature, b = ~ I is the equilibrium length

of a subchain, Ns is the number of monomer links in a subchain and I is the length of the

monomer link.

The atoms which make up the subchains have a random motion known as

Brownian motion due to thermal energy. The Brownian motion of the chain atoms is

lumped at the beads so that the motion of the beads is considered random. The random

motion of say the jth bead is not to be confused with ~j which is the drift velocity (time

averaged velocity) of the jth bead. Now the random motions of the beads is provided by

so called Brownian motion forces. It is assumed that the Brownian force on the i th bead

will be ftbrownian = -kBT(0/0xi) In ~(x) where kB is Boltzmann’s constant and 

temperature. Without going into detail, the force is entropic in nature such that the

particles (beads in this case) tend to reduce the gradient of their distribution ~; i.e. tend

towards maximum entropy.

Neglecting inertia, the equation of motion of the i th bead is given by the

summation of forces due to hydrodynamic drag, Brownian motion, and the springs

connecting the (i - 1)th and the (i + 1)th bead (Bird et. al., 1987):



kT
~(:~ i- l~. x i) - kT ~ii In ~F(x) + 3 ~- (xi+ 1 - 2 xi + xi_ = 0.

Viscous force Brownian force Force due to connecting springs

There are N such equations of motion; one for each bead. Now suppose that an impulsive

flow ~ (t) = ~ fi(t), where fi(t) is the dirac delta function, is applied to a fluid 

equilibrium. Examination of Eq. 4.2.2 shows that the viscous forces applied at the beads

by the flow of the solvent would force the chain to deform affinely (Fig. 4.2.4)

immediately after deformation is applied such that i i = K. x i and

fl Iixi(0 ÷) = ~: 8(t). F. xi(0-) dt = F. xi(0) dt = F. 

where F is the deformation gradient, xi(0") is the position vector of the th bead prior t o

the flow and xi(0÷) is the position immediately after flow. This situation is illustrated in

Fig 4.2.4 where the chain in equilibrium (Fig 4.2.4 a) is deformed afflnely by a shear

flow such that the subchains in the deformed chain (Fig 4.2.3 b) experience tension 

compression depending on its orientation at instant of flow.
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shear flow

(a) (b)

Fig. 4.2.4 (a) Bead-spring model of chain in equilibrium. (b) Chain after instantaneous

shear flow is applied. Note tension and compression in subchains due to deformation.

After time, the tension and compression in the subchains will subside since the

macroscopic flow has ceased and the chain will return to an equilibrium configuration.

The relaxation process does not occur immediately because of the friction between the

solvent and the beads. The evolution of this process is determined by the diffusion



equation. The diffusion equation is derived by combining the N equations of motion

given by Eq. 4.2.2 plus an additional equation. The additional equation is provided by

taking the time derivative of Eq. 4.2.1. Since the orientation is a function of time i.e. xi =

xi (t), the time derivative of (4.2.1) gives

~/(X) 

--1 £ ~’i’ (Xi ~/(X))
(4.2.3)

0t i=

Solving for i i in Eq. 4.2.2 and substituting it into Eq. 4.2.3 gives the diffusion equation

for evolution of the orientational distribution function ~(x) (Bird et. al., 1987)

= 1 .(kT ~jj-(xi+ 1- 2xi + Xi_l) I]/- - K.Xi ’t[/) (4.2.4)
Ix

Due to its linearity, a separation of variables and a normal coordinate transformation

applied to the diffusion equation yields a solution for the orientation distribution function

~(x(t)) (not shown here since the solution is rather complex). The orientation distribution

function determines the likelihood that a given chain will take the configuration Xl, x2, ...

xi .... XN. Furthermore, for each configuration Xl, x2 .... xi ....XN, the force in each

subchain can be calculated. From this information, the average (i.e. over all possible

configurations) force due to all polymer subchains passing though a given plane yields

the contribution of stress due to the polymer molecules *. Adding the contribution of

stress due to the solvent yields the following constitutive law:

cYij(t) = P ~iJ + ~S dij(t) + f~ nkT ~ ~’m
rn=l--~-1 e-(t’x)&m Bij(t"c) (4.2.51)

with the relaxation times ~ given by

Ns 12
~’m = k = 1,2 .... N (N = number of beads) (4.2.52)

24 kT sin2(mrd2Ns)

5O

*Eq. 3.14 derived by the virtual work method can be used to provide the stress by performing a coordinate
transformation from xi to (0i, ~i ). Such a transformation converts the configuration distribution ~(xi) to 
orientation distribution C (0,q~).



the Finger tensor Bij(t,x) is given by the relation

Bij(t,x) = Oxi(t) Oxj(t)
~Xk(,~) ~Xk(,~)

(4.2.53)

such that xi(t) is the current position and Xk(’t) is the position at the previous time 

dij is the rate of deformation gradient, rls is the viscosity of the fluid, n is the number of

polymer molecules per unit volume, Ns is the number of monomers per subchain, and I is

the length of each monomer link.

51

4.2 b Polymer Melts

The expression for stress (Eq. 4.2.5) has been shown to be successful 

describing the behavior of dilute polymer solutions shown in Fig. 4.2.2. Because the fluid

is assumed to be dilute, such that polymer chains do not interact, the friction applied to

the beads is only due to the solvent. At very short times (See Fig. 4.2.2) the same bead

spring model is also used for polymer melts. In this case the friction applied to the beads

is due to the surrounding polymer chains and is treated by the same exact equations as

described above for the solvent. The flow of surrounding polymer molecules around the

beads of a bead spring chain seems to be more complicated than the flow of the solvent.

Nevertheless, this is the simplified treatment made by rheologists in much of the

literature (Bird et. al., 1987; Doi and Edwards, 1986; Ferry, 1981; etc.) (Bird, 1987 

incorporated an additional anisotropic friction coefficient called the link tension

constant). To characterize the behavior of the melt at longer times additional mechanisms

must be considered. The reptation theory developed by Doi and Edwards (1978) and to 

described here is the accepted explanation for the plateau and terminal behavior of

¯ polymer melts and concentrated solutions. In a crosslinked rubber, the dynamics for the

relaxation process at the early stages of incipient deformation (at very short times in Fig.

4.2.2) are basically the same as that for the uncrosslinked polymer melts.



According to Doi and Edwards (1978) "the major factor governing the motion of 

polymer in a network is the effect of entanglements i.e., chains cannot pass though each

other". The portrait of an entanglement network given (Fig. 4.2.5 a) is Of a molecule

(crosslinked or uncrosslinked) constrained by surrounding polymer chains ( seen as dots

in Fig. 4.2.5 a). The constraints of the network are idealized as a tube or cage

surrounding the molecule (Fig. 4.2.5 b). The center line, called the primitive chain,

represents the average location of the molecule, since the molecule is constantly

"wriggling" due to thermal fluctuations. The dots shown in Fig. 4.2.5 (a) and (b) actually

represent the primitive chains of the surrounding molecules. The force in the chain is

assumed to be along the primitive chain. Doi and Edwards give mathematical motivation

for the tube and pritnitive chains, the concepts are merely illustrated here. ̄

(a) (b)

Fig. 4.2.5 (a) Schematic of a polymer chain in entanglement network where dots

represent surrounding chains. (b) The idealized constraining tube and the primitive

chain (centerline).
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For the uncrosslinked melt, the tube confines the chain, otherwise the chain would be free

to roam anywhere in the network and thereby violate the constraints of the surrounding

chains. The process of confining the chain in such a tube reduces the configurational

entropy and therefore requires a force to maintain the tube constraint even when the

polymer melt is in equilibrium. This force is applied along the tube by the surrounding

network (sort of a distributed force) and in the equilibrium state amounts only to 



hydrostatic stress since the chains are randomly oriented. The tube is assumed to deform

affinely while the chain inside is able to rearrange itself within and assume its most

favorable position (i.e. relax, more about this later).

The tube model requires the calculation of a confinement force which is difficult.

To simplify the model, Doi and Edwards further idealized the problem using the so called

slip link model (Fig. 4.2.6 a) (see also chapter on elastic entanglement model). The 

links force the uncrosslinked polymer chain to maintain the confines of the tube. A

fictitious force is applied to the ends of the chain which represents the effect of

confinement. For example, if this force is not applied, the chain will escape from the slip

links (i.e. escape from the tube) (Fig. 4.2.6 
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(a) (b)

Fig. 4.2.6 (a) The slip link model of a confined chain with forces applied at ends. (b) 

behavior of a chain if no force is applied at the end.

In the undeformed state, each s!ip link is assumed to be separated by some characteristic

distance " a " (Fig. 4.2.6 a). Doi and Edwards (1978, 1986 etc.) considered this distance

" a" a measure of confinement. Marrucci (1979) considered it the distance between

entanglements. A Gaussian subchain with No monomers (or statistical links) each 

length 1 spans each slip link such that a = q-No 1 is the mean square length of the chain

and when undeformed (Fig. 4.2.6 a) the force is:

Feq - 3 kT 3 kT 3 kT (4.2.6)
No 12L= N’f-~ol- a



As with the tube the slip links are assumed to deform affinely and the chain is able to

slide freely through the slip links until it reaches its most favorable position.

The slip links play the same role as the entanglements (Fig. 2.2.1) shown in the

presentation of the elasticity model. The entanglements were used by Marrucci and are

simpler to conceive. It is not that important which conceptual device is used, they are

both used to force the chain to deform with the surrounding network as opposed to a non-

entanglement model where a chain between crosslinks is only affected by relative motion

of the crosslinks. The main difference between the tube model and the slip link model is

how the force in the chain is calculated. In the tube model, the entropy of a polymer chain

bounded by a tube of a given configuration is calculated in a sophisticated manner. In the

slip link model the ~quilibrium forceis determined from the stretch of the subchain with

No monomer links between adjacent sliplinks. This is what was done in the development

of the elasticity model and is much simpler than the tube model.

Consider the chain in Fig 4.2.7 (a) and the detailed portion ABCD (Fig. 4.2.7 b) 

its equilibrium state. In order to characterize its dynamic behavior the chain can be

further subdivided giving a Rouse bead spring model of the chain (Fig. 4.2.8).
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Fig. 4.2.7 (a) Long polymer chain in equilibrium The dotted lines are shown 

illustrate the tube. and the solid line is the primitive chain.
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(b)

Fig. 4.2.7 (a) Long polymer chain in equilibrium The dotted lines are shown 

illustrate the tube. and the solid line is the primitive chain. (b) Polymer section

ABCD in. The force is calculated by the slip link method (with slip links at A,B,C

and D).

B

(a) (b)

Fig. 4.2.8.(a) The AB portion of the chain in Fig. 4.2.7 (b) A bead spring

type representation of the AB portion. The entire chain of Fig. 4.2.7 (a)

may be comprised of the Rouse bead chain models.

Don’t be confused with the subchains used for the Rouse bead spring model and those

used for the entanglement models. The subchains in the entanglement model represent

excursions of the chain and tube (i.e. AB, BC, CD in Fig. 4.2.6) as it wanders through

the entanglement network. Rouse subchains would be a further discretization of the

chain; sort of subchains of a subchain in other words.

The following five steps describe the evolution of the dynamics of a chain during

the relaxation process after the application of a single step strain. The relaxation curve in
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Fig. 4.2.9 illustrates the chronology of the events during the relaxation process. As will

be discussed, it is the first three steps "force equilibration" that also occur in crosslinked

polymer chains. Doi and Edwards give only a qualitative description for the force

equilibration process. In fact they only consider the disengagement process (e.g. Step 5 in

Fig. 5.2.9) when deriving their constitutive law.

Step__L.

When a step strain is applied to a polymer melt or rubber in equilibrium, the

viscous forces of the surrounding molecules transport every portion of the relaxed chain

ABCD (Fig: 4.2.7) affinely into a new configuration A’B’C’D’ (Fig. 4.2.10) as was 

case for the polymer solution. The deformed chain is not in equilibrium. At this point the

diffusion equation derived using the Rouse bead spring model (Fig. 4.2.3 and 4.2.8)

would be the appropriate means for characterizing the relaxation of chain.

10.00 i I

7.75 -

3.25 -

stepstep step step
2. 3. 4.

1.00 i I I

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

log t (seconds)

Fig. 4.2.9 Approximate sequence of events during relaxation process of a typical

polymer melt. Step 1. is deformation. Step 2 and 3 is force equilibration. Step 4

is chain retraction and step 5 is the chain disengagement process.



57

D!

Fig. 4.2.10 The chain ABCD after affine deformation. Sections AB and CD

have lengthened while BC has shortened.

Step_.~2.

According to Doi and Edwards (1986), the Rouse bead model (Fig. 4.2.3 

4.2.8) could be used for times t < Xe where Xe* is the time where tube constraints become

apparent. Unlike the Rouse chain in the fluid, the caged chain is not allowed to assume all

configurations**. At this point the chain motion in the direction transverse to the tube has

somewhat attenuated. This condition is shown schematically in Fig. 4.2.11. For example,

in very simple terms, if section A’B’ in Fig 4.2.10 was comprised of Rouse subchains,

they would be highly extended since A’B’ has yet to reconfigure. A short term

reconfiguration is achieved by rotation of the subchains toward the direction of stretch.

D’
B’ .,.,,

Fig. 4.2.11 Short term rearrangement of chain such that diffusion of the chain

transverse to the tube has diminished.

This short term reconfiguration is shown schematically by the flat appearance of the

chain segment A’B’. This amounts to a "local" relaxation process. The force in the

* A rough calculation for this time is made by DeGennes (1971)

** This is why Eq. 4.2.5 is not valid for the whole relaxation process.



primitive chain still varies along the length of the chain so that more relaxation is still to

occur. A "one dimensional" diffusion process occurs in the next step to equilibrate the

force.

Ste__ ._L3.

At this point the majority of the relaxation process is provided by diffusion along

the length of the tube. During this process (for times Xe > t > XR** ) monomers from the

compressed chain segment B’C’ slide through the slip links in order to provide force

equilibration along the chain. In actuality, the process of step 3 begins to be evident

before the conclusion of step 2 especially near the points B’ and C’. The equilibrated

chain is shown schematically in Fig. 4.2.12. The force along the chain is constant and is

calculated in identical fashion as that given in the development of the elasticity model

(Section 2). Since the chain in Fig. 4.2.7 (a) is assumed to go through excursions in 

different directions of three dimensional space, the stretch of the deformed contour length

is given to be (~,) and the force for the Gaussian chain is calculated to be that shown 

Fig. 4.2.12.

D’

F- 3kT
0

Fig. 4.2.12 Polymer chain after force equilibration along length.

Up to this point the behavior is much the same for the crosslinked and uncrosslinked

polymer chains. Although the concepts given for the three steps shown are outlined by De
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"~R is the longest Rouse relaxation time calculated by Eq. (4,2.52) at k = 1. It is shown by Doi and
Edwards (1986) that the one dimensional diffusion process occuring along the length of the tube will have
the same relaxation time as the three dimensional relaxation process given by Eq. (5.2.51)



Gennes (1971) and Doi and Edwards (1986), the details on how to implement these

stages into a finite deformation constitutive model are not given nor how the transitions

between the steps could be handled. These authors were more concerned with the

subsequent chain retraction and disengagement process for the uncrosslinked chain since

these are the mechanisms that provide the plateau and terminal regions of behavior in the

relaxation curve (Fig. 4.2.2) for the polymer melt. Doi andEdwards (1986) consider 

the disengagement process outlined in steps 5 when they construct their finite strain

constitutive model for polymer melts.

If the polymer chain is not crosslinked the next process that occurs is called chain

retraction. The deformed version of the entire chain shown in Fig 4.2.7 (a) is shown 

Fig 4.2.13 after force equilibration (Step 3) has taken place.

F = 3 kT ,~,

F - -~ hi ,~, ts ~, ,

-%-. ,’/;,’
"\k x... /I ./ n I~ ,,.~f /

A’ C’
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Fig. 4.2.13 The entire deformed chain after force equilibration

Chain retraction is the diffusion process such that the primitive chain returns to its

equilibrium contour length. As the chain retracts, it slides along its length. In fact it is

required that any motion of the chain must occur such that the chain remain in the tube

except at the ends where it is free to take up new positions. This phenomenon is called

reptation. The retracted chain is shown in Fig. 4.2.14. The force along the retracted chain

is the equilibrium force since the chain has returned to its equilibrium contour length. The



time that the chain has reached its equilibrium contour length marks the beg.inning of the

plateau region in the stress relaxation curve (See Fig. 4.2.2 and 4.2.9)

mm~
f~~"’.,_ .: ¯ .

¯

’ ’ I "’" F~ ~_~oT’’~ l. k:’~g’

q

" ¯ ,~.~
¯ . . .5.,,,.~"u "

A’
Feq__ 3 kT C’

Fig. 4.2.14 The deformed chain after chain retraction. The chain retracts such that it slides

along its contour (i.e. reptates). The fine dotted line represents the obsolete portion 

tube.

Despite the resumption of the equilibrium force of all the chains in the network,

the stress tensor is not isotropic. The chain sections are still highly oriented due to the

deformation, hence the anisotropy. At this point the diffusion process occurs such that the

chain slides back and forth along its length (reptation) becomes recognizable. With each

excursion at the chain ends, the chain forms new sections of tube as it winds it way

through the surrounding network (Fig. 4.2.15 a, b, c). Clearly this mechanism is present

throughout the first four steps, but since the process occurs slowly, it is negligible at the

early times. Because of the random motion of the chain ends, the average orientation of

all the new chain portions is isotropic; therefore, the remaining portion of the original

tube is the sole contribution to the anisotropy and the sole contribution to the anisotropy

of the stress tensor. In Fig. 4.2.15 (a), the chain slides to the left forming a new portion

of tube and leaving a vacant portion (shown by fine dotted line). In Fig 4.2.15 (b) and 

the chain slides two successive increments to the right. The length of the increments and

their direction is random. The shaded portion of the tube (4.2.15 a, b, c) indicates the

original tube before the chain began to escape. For all the polymer chains, only the length
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of chain that resides in the original tube contributes to the stress tensor since the

orientation of its segments remain anisotropic. Eventually the length of original tube

vanishes and the stress becomes is¯tropic and the polymer melt is in equilibrium. This

process is call chain disengagement and is the mechanism that governs the behavior in

the terminal zone of the stress relaxation curve.

(a)

Fig. 4.2.15 (a) Polymer chain after an incremental motion towards the left. The

lightly dotted line represents the portion of tube vacated after the incremental

motion. The shaded portion represents the length of chain occupying the

original portion of tube.

¯ -, ¯ l:}:l
,......-..-. #.i:¯~¯ .d...:.. ’.. ". ’.".N

". ""¯ .
¯ ...... . . ;~.. f...,,,:.,, ..,...~.;~.;,, ̄ (b)

¯ ̄ . -+..~:,u~¯ . ¯ ..... ¯ ¯ .~..~.’.’..;:-" ¯

0;..’¯ ¯ ¯

Fig. 4.2.15 (b) Polymer chain after an incremental motion towards the right.

Notice how the new tube sections only appear at the end of the chain such

that the chain slides along its length. The lightly dotted line represents the

, portion of the tube vacated after the incremental motion¯



62

1

- . . . . ¯ ~.’t+(’l
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Fig. 4.2.15 (a) Polymer chain after another incremental motion to the fight.

At this point the a large portion of the original tube (shaded region) has

diminishe.d.

The above steps 1-5 outlined the relaxation process occurring during a single step

strain. It is easy to derive the equation for the stress during this relaxation process

considering only the effects of disengagement. If each polymer chain is assumed to have

ns subchains prior to the step strain, each will have ns / (~,) subchains after chain

retraction (Step 4) occurs due to shrinking of the polymer chain inside the stretched tube.

Furthermore, the force in the chain upon retraction is merely the equilibrium force

3kT/q-Nol (cf. Eq. 4.2.6). Replacing nt with n ns / (~,) (n is the total number of polymer

chains), lo with the original subchain length ~o 1 (cf. Fig. 4.2.6), and f(~,) 

3kT/q-Nol in Eq. 3.19 yieldsthe equation for the stress upon chain retraction but before

disengagement,
2g

n ns v/-.N-~oI ~Xi ~Xn

ff
3kT ~ 1

(Tin = ~ ~)XK ~ ~ I’LK ML ~,
O0

sin O dO dO + p kin
4rr (4.2.7)

During the disengagement process the ends of the chain form new tubes which on the

average are isotropic; therefore, it is only necessary to include the amount of chain length

remaining in the original tube when calculating the stress tensor¯ The quantity IX(t) (4.2¯8)
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represents the fraction of chain remaining in the original tube, on average, at time t after

loading and is calculated statistically by Doi and Edwards (1978) for the step strain to be,

8~t(t) = ~ _--G--, e-(p2t/x~) where d = ~n3(N°l)2 (4.2.8)
p; odd 71: ~d /I; 2 kT

where ~ is the coefficient of friction between the chain and the tube. The function ~(t)

represents the relaxation function and is appended to Eq. 4.2.7 to give the stress as a

function of time during the disengagement process;

(4.2.9)

where Gd = 3 kT nns. Normally the quantities for Xd in (4.2.8) are not known and "~d 

chosen from experimental results. Again (4.2.9) represents the stress due to a single step

strain after the retraction process has occurred. The constitutive law for arbitrary flow

histories at rates sufficiently low that effects only due tO disengagement are noticeable is

given by Doi and Edwards (1978) to be*,

mk ml sin 0 dO d@ d’t: + p ~in

X,(t,x)2 
(4.2.10)

~X(t)i
- Fik(t,’~) is the relative deformation gradient and ~,(t,x) is the relative stretchwhere 3x(X)k

such that ~,(t,x)2 = mk Fik(t,x) Fil(t,’¢) ml. As’it turns out, when a step strain is applied,

Eq. 4.2.10 is slightly different than 4.2.9 due to the so called independent alignment

assumption used to derive (4.2.10). This discrepancy is small at moderate strains but

becomes considerable at large strains. Equation 4.2.7 and 4.2.10 is considered in Sections

4.8 and 4.9. An approximate form for Eq. 4.2.10 was given by Currie (1982) and 

shown in Eq. 4.9.1.

* A constitutive law for arbitrary flow histories that includes chain retraction along with chain
disengagement has yet tobe developed. An equation which describes the stress during relaxation upon a
step strain and includes retraction and disengagement is available (Doi and Edwards, 1986).



4.3 Proposed Force Equilibration Viscoelasticity Model
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The first three mechanisms of viscoelasticity described above for the polymer
J

melt are the same for the polymer solid and are the basis for the viscoelasticity model

described here. Since all the chains are assumed to be crosslinked, no chain retraction

(step 4) and chain disengagement (step 5) can occur. It remains to describe the force 

the chain during its non-equilibrium stages. A complete kinetic theory could be

developed to achieve the analysis, but this is deemed too difficult. The approach used

here to describe the non-equilibrium force in the chain is empirical. A suitable

approximation is postulated. It is unclear what effects finite extensiblity of chains have on

the viscoelastic behavior of rubber. Finite extensibility has already been incorporated in

the equilibrium, elastic model given in Section. 2. Development of the viscoelastic model

will be in the context of infinitely extensible chains. The model can be easily generalized

to the finite extensible case; at least for the equilibrium stress given by Eq. 2.4.6.

10.00
j i

I I i

~ 8.0o

~, 6.00 -

O 4.00
-step 2. step 3.

2.00 i i i r i
-2 -1 0 1 2 3 4

log t (seconds)
Fig. 4.3.1 Approximate sequence of events during relaxation process of

a typical solid rubber. During step 1. the rubber is deformed and step 2.

and 3. together comprise the chain force equilibration process.
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It is useful to review the processes of relaxation considered (See Fig. 4.3.1).

(Step 1.) When the step strain is applied, friction from surrounding chains

transports every point (not just the endpoints) of the chain affinely into the non-

equilibrium configuration (Fig. 4.3.2 a) At this point forces in the chain may be very

high. In fact, bonds between adjacent monomer links in the chain may stretched

producing a glassy response.

(Step 2.) The first stage of relaxation is mainly influenced by chain diffusion

occurring transverse to the tube (Fig. 4.3.2 b) In this stage, portions of the chain reconcile

their non-equilibriurn configuration locally (i.e. short term reconfiguration). This occurs

only for a short time since the constraints of the tube disallows large scale motion in the

transverse direction.

(Step 3.) Since the tube is not straight and zigzags its way through the network,

portions of the chain may be in tension while others in compression. This second stage of

relaxation is mainly due to diffusion along the length of the tube Until the force

equilibration achieved (Fig. 4.3.2 c).
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(a)

i2-_." .- ~,¢.~,.,,,,~

",._y.J o

(c)
Fig. 4.3.2 (a) Affine motion of entire chain. (b) Relaxation of chain transverse to tube. 

Relaxation along length of tube.

A Rouse bead chain model could be used to model step one and two although it could

never capture the glassy response. After step one and two the orientational distribution



function given by the solution to (4.2.4) would no longer be valid due to tube constraints.
¯ o

A one dimensional diffusion equation could be used for step three. Instead it is merely

recognized that the forces in the chain while in the non-equilibrium state (Figs. 4.3.2 

and b) are greater than that of the relaxed chain. Furthermore, after sufficient time the

chain will relax once force equilibration along the chain has been reached. The following

expression is used in an attempt to describe the transient force in the chain:

t
3 kT (~,(t)> + f G(t "c) dk(x____.~) f(t) = fe(t) + fv(t) - N4-~o 

.1 dx
_oo (4.3.1 a)

t

3 kT (~,(t)) and fv(t) = ~ G(t - z) d~,(x______~) where fe(t) - Nx~ol
d’l:

,1
-oo

The elastic portion of the’force fe(t) represents the equilibrium value of the force for 

Gaussian chain after force equilibration has been reached (the Langevin chain could also

be used). The viscoelastic portion of the force fv(t) reflects the additional amount of force

in the chain before equilibrium has been attained. The kernel G(t - x) is some

experimentally determined function. It would most likely be a Prony series,

N
G(t - z) = ~ cie-(t- x)/x~

i
or power law: (4.3.1 b)

G(t- 1:) - 
1 + (L~-~)n

When deformation has ceased,’it is intended that fv(t) --) 0 and f(t) --) re(t) after sufficient

time has passed. The form of fv(t) attempts to take into consideration the affine motion 

the tube and the force fluctuations along the chain during the deformation process. The

relaxed chain is shown in Fig 4.3.3 (a). As deformation is applied, the tube and

surrounding network deform affinely carrying the chain into non-equilibrium

configurations. Each individual section of the tube (e.g. A’B’ in Fig 4.3.3 b) stretches

differently depending on its orientation(0,~)). Consequently, the non-equilibrium force 
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each section of chain is influenced by the rate of stretch of the tube ~,(t). For example,

sections of chain in tubes which experience high stretch rates %(t) will experience high

forces since the tube applies friction to the chain..

?’-,,
7 ".

I¢" " ../~//

F~q~ ""
O

Fig. 4.3.3 (a) Chain in equilibrium.

Xl
1/2 D’~,(0,0) 1 N q~.~.~’~ B," ...... -,.

Fig. 4.3.3 (b) Chain after deformation. Tube sections stretch according to their

orientation (0,4)). The unit vector of mA’B’ represents the orientation of A’B’. Section A’B’

has been stretched while B’C’ has been compressed.

The easiest way to illustrate the model is to use a mechanical analogy. The non-

equilibrium force fv is equivalent to a spring and damper element. The undeformed chain

shown in Fig. 4.3.3 (a) is shown as an assembly of these spring damper elements in Fig.

4.3.4 (a). After deformation the points ABCD transform affinely and the non-equilibrium

force can be calculated. For example the force (fv)A’B’ (Fig. 4.3.4 b) in the deformed

segment can be calculated exactly by the following hereditary integral,
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t

fv(t)A’B’ = r klo e-(t - z)/to dk(x____~) 
J d’~

-OO

(4.3.2)

where k is the spring constant, to is a relaxation time, and 1o is the undeformed length

(See Fig 4.3.4 a). Clearly the force in the spring damper system diminishes over time

once the deformation has ceased.

/ B D (fv)A’B’

~ k
kt°

to

(fv)A,B,
(a) (b)

Fig 4.3.4 (a) The undeformed assembly of spring dampers elements. The spring constant

is k and the damping coefficient is kto where to is some relaxation time. (b) The segment

AB after deformation. Segment AB length 1o is stretched by a factor of ~,.

The force in the chain (Eq. 4.3.1) along with Eqs. 3.19 or 3.20 are used 

find the stress tensor. The total number of subchains nt = n ns, where n is the number of

polymer chains and ns is the number of subchains per polymer claain. Associating 10 with

~/No I (the undeformed subchain length) and using Eq. 4.3.1 for the force in the chain 

Eq. 3.20 gives the following equation for the second Piola Kirchoff stress,

X

MK ML sin 0
d® d* + p F~nF~n

The stress can be divided into the elastic and viscoelastic contributions:

(4.3.3)
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’

ff MK ML sin 0S~d.(t) = 3 G (k) k(®,~) 

00

dO d~ + p Finn Finn

0 0

(4.3.4)

MK ML sin ®d~,(®,~,’r) 
dO d~ (4.3.5)

d’c. ~,(®,~) 4re

where G = nns in Eq. 4.3.4 and nns 4-N-o-o I from Eq. 4.3.3 is subsumed into the kernel

function G(t - x) in Eq. 4.3.5. The elastic portion S~¢L(t) is the Piola Kirchoff stress

equivalent to Eq. (2.2.20 a) considering infinitely extensible chains. It remains to analyze

the viscoelastic backstress.

4.4 Thermodynamic Considerations

For a Prony series kernel, it is shown in Appendix C that the viscoelastic

backstress is actually the gradient of the following scalar potential functional:

such that

yfwV= 1 f cie-(t-
~- 41t

oo i ]

S[CL(t) o~v=3--~
(4.4.2)

(4.4.1)

where EKE is the Greens strain tensor. If a power law kernel is used the summation in Eq.

4.4.1 is replaced by a Fourier transform integral over the frequency domain. Because of

Eq. (4.4.2), ~v is the free energy functional and the constitutive law is termed

hyperviscoelastic. The rate change of the free energy ~v is

3Wv ~tlSv
(4.4.3)qJV(EKL’t) - 3EKL I~KL + 

and the rate of dissipation (Christensen, .1982) is defined 



OTv
A=- ~t (.4.4.4)

It is shown in Appendix C that rate of dissipation of energy is always nonnegative i.e.

A _> 0. Consequently the constitutive law satisfies the Clausius Duhem inequality

(Eringen, 1967) for isothermal processes:

A = SKLI~KL _~v >_ 0 (4.5.5)

Since the stress is the gradient of a scalar, a suitable approximation for Wv will

yield a symmetric tangent stiffness matrix for finite element analysis.

4.5 Approximation of the Viscoelastic Backstress

Equation 4.3.5 cannot be solved analytically. Several attempts were made to get

the best approximation. Two approximations are developed here. Both approximations

rely on the approximation for the stretch ~, (shown plotted in Figs. 2.4.2-3)

1 I1, 1 I1 2
~(~,(I)) ---- ~ (~,2(O,(I)) - -~-) (~.2(O,(I)) 

where )~2(®,cI)) = MK CKj~ ML, the integral identities Eq. 1.16-1.19 and other similar

approximation techniques.

The first approximation is made directly on Eq. 4.3.5 and is shown in Eq. 4.5.2

f1-1/2 r
-i91--~ijCkl- ~18--~klCij 6 "~)d-~Ill/2 Ckl) d’c

(4.5.2)

Eq. 4.5.2 is fully derived in Appendix D. The advantage of this approximation is that it

gave the best results compared to exact numerical solution of Eq. 4.3.5 using the least

amount of terms. Approximations made directly on Eq. 4.3.5 are not guaranteed to give

visco-hyperelastic forms (See Section 4.4). It turns out that Eq. (4.5.2) is not visco-

(4.5.1)



hyperelastic and the resulting tangent stiffness matrix is not symmetric. Consequently,

symmetry is sacrificed for accuracy.

The second method approximated the free energy functional Eq. 4.4.1 and is

shown for the case of a single exponential kernel in Eq. 4.5.3

~v =2o3C e(t - "T)/to d-~I1 (~))1/2 d’~ 

t t

cff (4.5.3)e(2t - "1: - rl)/t° 11(’1:)-1/2 Ckl(’~))~--~ [Iltrl)

Eq. 4.5.3 is derived in Appendix D. The stress is the gradient of the free energy function

(4.5.3) with respect to the Green strain and is shown for the case of a general Prony series

of a power law kernel in Eq. 4.5.4

S~ (t) = --1------ [3~iJ ~kl -10 II/2ll~l-!-~iJ Ckl’ + (Sil~jk + ~ik~jl)] G(t- ~)~-~-tq" d ,r-l/2 Ckl) d’~ (4.5.4)
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The advantage of this approximation is that it satisfies the Clausius Duhem inequality,

and yields a symmetric stiffness matrix. It will be shown that this method is not as

accurate as the first method. Using an additional term for the approximation of ~, (Eq.

4.5.1) will give a more accurate approximation for the stress, but would include eighth

order tensors in the expression and would be too unwieldy.

To determine the efficacy of the approximations, a single exponential kernel (Eq.

4.5.5) was used (relaxation time to = 0.75 minutes and c = 1 MPa) and both methods were

compared to the numerical solution of Eq. 4.3.5.

G(t) = c -t/to =1 e-4/3 t (4.5.5)

The numerical solution of Eq. 4.3.5 was provided by a Gauss point integration similar to

the one made for the elasticity equations.in Section 1 and Appendix A. An additional

numerical solution to the hereditary integral included in Eq. 4.3.5 is found using a



recursion algorithm at every Gauss point. As with the numerical solution made in

Appendix A the spherical domain is mapped to a rectangular domain and then

discretized. Unlike before, the adaptive algorithm was not used since the strain history

was required at the Gauss points. Typically 20 panels with 6x6 Gauss points were found

to be more than adequate to perform the integration. The uniaxial stretch history shown in

Fig. 4.511 (a) was used to evaluate the two approximations against the exact numerical

solution with the results shown in Fig. 4.5.1 (b). The first method corresponding to Eq.

4.5.2 is called the direct approximation while the second method (Eq. 4.5.4) is called the

symmetric approximationl It is seen that the symmetric approximation at ~ = 4 is off by

almost 15% while the direct is off by 8%.

The direct method is also compared to the numerical integration for a ramp

loading in shear (Fig. 4.5.2 a). The results for the shear stress are shown in Fig. 4.5.2 (b)

and the results for first and second normal stress are shown in Fig. 4.5.2 (c). The direct

method gave good approximations for the both the shear stress and the normal stresses up

to shear a shear of 2. The direct method was used to generate all the results given in

Section 4.6.
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(a) Axial stretch history used for evaluation of approximations
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Fig. 4.5.1 (b) Comparison of approximation methods to numerical integration
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4.6 Comparison of Force Equilibration Viscoelastic Model to Experimental Results

A literature search was made to find published finite strain viscoelastic data for

unfilled crosslinked rubber. Some of the data found is listed in the following articles: T.L

Smith (1962,1969); Bloch, Chang and Tschoegle (1978,1978); McGuirt and Lianis

(1969, 1979); Goldberg and Lianis (1970); Yuan and Lianis (1972); Scholtens 

Leblans (1986); L.J. Zapas et. al. (1965, 1966). More published data is available; most 

it was published by the authors given in the previous list. Most of the data is for uniaxiai

relaxation and stretching at a constant stretch rate. Goldberg and Lianis (1970) and Yuan

and Lianis (1972) are the only articles found with data relating to shear deformation.

Zapas (1966) and McGuirt and Lianis (1970) include some biaxial relaxation data.

In the following, unpublished databY Dafalias and data by Bloch, Chang and

Tschoegle (1978) is used to evaluate the force equilibration model. It must be mentioned

that the force equilibration model was based on the assumption that themajority of the

chains in the network: are crosslinked. It is realized that most rubber would probably not

meet this stipulation. Nevertheless, in developing the model it was hoped that the ideal

conditions would prevail and that additional viscoelasticity due to other effects could still

be captured successfully.

The force equilibration viscoelastic model is used to simulate unpublished shear

relaxation and cyclic shear data from Dafalias. The chemical properties of the rubber

were not made available by the proprietor. The model is the sum of elastic and

viscoelastic contributions to the stress.
e V

cij =ffij +crij +P 8ij (4.6.1)

where the elastic portion of stress is defined is:

+ I- I2 )l- --(I1-1/2-3 II 2)Bij- - I1-3/282/(4"6"2)
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and the viscoelastic second Piola Kirchoff stress is:
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itI]I/2[ -- -i91---6ijCkl-~a8-~klCij 68ikSj]] G(t x),-~-(_I-mCkl)d’~S~ - 30 (14- 912) ~ij~kl + -

(4.6.3)

The viscoelastic Cauchy stress is found by the transformation c~j = FiK S~L FjL where

FiK is deformation gradient. In order to model data, values for the robbery modulus G and

the number of links between entanglements must be chosen. Furthermore, a relaxation

function G(t) must be chosen. Data from the shear relaxation test provided by Dafalias 

shown in Fig. 4.6.1. A step shear strain y = 1.1 was applied to a thin walled cylindrical

sample over the pe.riod of 5 seconds after which relaxation occurred. The following

constitutive parameters were used to model the experimental relaxation curve:

G = .627 (MPa)

No = 3.8

G(t) = 28.1 -t/4 +0.135 e- t/5x103 + 0.135e-t/4xlo’ (MPa) where time is in seconds

The data is also shown using a log-log plot in Fig. 4.6.2. Examination of Fig. 4.6.2 shows

that the stress in the sample has yet to relax. Results from a cyclic shear experiment

I T Imax - 2 along with the simulated results using the above parameters are shown in Fig.

4.6.3. The rate of shear was }, = 0.01335 s-1 such that it took 150 sec. for the shear strain

to go from 0 to 2. It is seen that the experimental data is not symmetric about the

undeformed configuration due to some experimental error. Nevertheless, the simulation ̄

appears to give good results. The model is capable of capturing the thinning of the loop

near the undeformed configuration. The amount of upturn in the curves at such low

strains seems rather unusual.
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Fig. 4.6. I Experimental relaxation data along with simulation. A shear of 7
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Fig. 4.6.3 Cyclic shear strain for strain rate ~, = 0.01335.

A particularly low value of No (No = 3.8) was used to capture the upturn. One must

remember that in strict terms No does not really represent the number of monomers

between entanglements, but instead represents the number of statistical links due to steric

hinderances between bonds of adjacent monomers. Nevertheless, No is ridiculously low.

This is probably due to strain induced crystallization occurring. It is hard to determine

this precisely since the chemic~il composition of the elastomer was not divulged.

Finite strain uniaxial data from Bloch, Chang and Tschoegle (1978) is shown 

Figs. 4.6.4 - 4.6.7. The experiments were performed on SBR rubber samples. This rubber

is typically used for automobile tires due to its toughness and is probably the elastomer

most often studied. In Fig. 4.6.4, data for uniaxial stretching at three different stretch

rates is shown. The stress ’f’ in Fig. 4.6.4 is the force per undeformed area. The material

parameters and relaxation function used to model the data are the following:



G = 2.73 (MPa)

No = 50
150

G(t) 
1 + (t / lx10-5)0.4 (MPa) where to = lxl0 -5 minutes

The samples were stretched at a constant rate such that )~(t) = 1+ r t with r = 0.011 min.-1,

0.442 min.-I, and 4.42 min.-1. The data was fit as best as possible using the proposed

viscoelastic model. The method seems to be ineffective in capturing the large amount of

curvature apparent in the experimental data. The failure of the method is not due to the

choice of parameters of the model, but is an inherent trait of the model. Different kernels

for the viscous stress could not reproduce the amount of negative curvature observed in

the data.

The Cauchy stress for the same data is plotted in Fig. 4.6.5. The difference in

curvature is particularly apparent in this plot. Whereas the simulated results are concave

up and then proceed as straight lines, the experimental results are just straight lines. In

fact, for much of the other data surveyed the Cauchy stress plots are concave down up to

a stretch of about two before proceeding in a straight line.

It is assumed that at r = 0.0011, the experimental data in Fig. 4.6.4 and 4.6.5 is

mostly elastic (at r = 0.0011, it takes 21 hours to stretch the sample to )~ = 2.4) The stress

at r = 0.0011 is subtracted from the stress at r = 4.42 and 0.442 and plotted in Fig. 4.6.6

(e.g. crv = ~r = 4.42 - (Yr = 0.0011). The stress ~v in Fig. 4.6.6 is basically the viscoelastic

Cauchy backstress ( i.e. stress/deformed area). The backstress for the proposed model 

concave up while the experimental backstress appears concave down.

Another useful perspective is provided by the Mooney stress plots shown in Fig.

4.6.7. The behavior at X = 1 is usually disregarded due to experimental error and small

strain effects. Examination of the experimental data in Fig. 4.6.7 reveals that the viscous

portion of the stress (i.e. the difference between the r=-4.42 and r=0.0011 curve) is more

profound at the small strains and that the experimental curves for the different rates
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appear to converge as the stretch increases. Apart from the behavior near ~, = 1, the

curves for the proposed model are parallel. It is seen that the Mooney plots reveal a

discrepancy in the elastic stress. This has been noted by Gottlieb et. al. (1983) for the

elastic entanglement model used, but this discrepancy is not serious when the data is

plotted using the Cauchy stress and force/undeformed area. This discrepancy becomes

even less apparent when finite strain effects become apparent as was seen Section 2.

Additional data from Bloch et. al. (1978) with simulations for axial cyclic loading

are shown in Figs. 4.6.8 (a), (b) and (c). Again the stress f used in plotting is the force 

undeformed area. These plots naturally reflect the same discrepancies as seen in Fig.

4.6.5. Evaluation of Figs. 4.6.5 - 4.6.8 show that the model clearly has the wrong strain

dependence. Possible causes behind the models inability to simulate the e~(perimental

data are discussed in the following sections.

4.7 Evaluation of Results

The proposed model appeared to give good quantitative and qualitative results for

the shear relaxation and cyclic shear tests. Actually the cyclic shear data appears to be

different than that seen from tests perform on filled rubber bearings (Kelly 1990). 

Kelly’s tests, the loops do not thin near the reference configuration. It is hard to say

whether the loops of an unfilled rubber always experience such a large amount of

thinning. It is recognized from Fig. 4.6.8 that the loops in cyclic axial loading thin

slightly at the reference configuration. Surprisingly, no other finite strain cyclic shear

results were found in the literature. Some date for monotonic constant rate shear was

published by Yuan and Lianis (1972). Their test were not performed at sufficiently

different rates and hence did not reflect significant viscoelastic behavior. Results for

shear relaxation were published by McGuirt and Lianis (1970). The models ability 

simulate the cyclic shear is inconclusive; particularly in view of results from axial stretch

tests.
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It is instructive to consider additional published constant axial stretch rate data

Experimental results given by Smith (1962) and Scholtens and Leblans (1986) are shown

in Figs. 4.7.1 and 4.7.2. Both figures plot the Cauchy stress verses stretch for different

stretch rates*. Whereas the Cauchy stress plots of Tschoegle’s (Fig. 4.6.5) test results are

nearly straight lines, Figs. 4.7,1 and 4.7.2 show a significant amount of negative

curvature at initial stretching. McGuirt and Lianis (1970) published data for uniaxial

stretching at a constant rate (2 curves at about the same rate) and the results appeared

similar to that of Bloch et. al. (1978). It is hard to generalize the results seen in the

published data, since there are many variables involved (i.e. molecular composition,

molecular weight, amount and method of crosslinking, temperature, etc). It does appear

that the positive curvature produced by the force equi!ibration model (Fig. 4.7.5) is not

normal.

The constitutive model is dearly incapable of capturing the qualitative nature of

the rubber in constant stretch rate loading. There are many possible reasons behind the

inadequacY of the model. The deficiency of the model is most probably due to the fact

that much of the viscoelasticity occurring during a constant strain rate test is due to

imperfections in the network. At the outset it was mentioned that these effects are not

considered in this model. It was assumed that the network was perfect. Near perfect

networks can be synthesized (Mark and Erman, 1988), but are probably more elastic (i.e.

less viscous) than the rubber used in the experiments considered here. Network

imperfections take the form of dangling chains and sol fraction. Dangling chains are

chains which are not crosslinked at both ends and sol fraction are chains which are not

crosslinked at all. Both these types of chains would experience the effects of chain

retraction and chain disengagement described in section 4.2. During relaxation, the

effects of chain retraction and disengagement mainly occur after force equilibration.

* The EPDM rubber in Fig. 5.7.2 was known not to be highly crosslinked whereas the SBR in Fig. 5.7.3
was at -34° C. (there is not a lot of published data)
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These network imperfections cause the relaxation which occurs after long times. Their

are some small strain viscoelastic theories for solid rubber which include the effects of

thedangling chains and unattached chains (Gaylord et. al., 1986; Curro et. al., 1985;

Curro and Pincus, 1983). Because they are small strain theories, they only consider the

relaxation times and not the strain dependence given by the reptation theory. The

relaxation times used here to model the experimental data are higher than realistically

expected for force equilibration to occur. The relaxation time for force equilibration to

occur will be slightly less than the longest Rouse relaxation time (Doi and Edwards,

1986). The longest Rouse relaxation time can be calculated by Eq. 4.2.52 with k = 1 (i.e.

the longest relaxation time) if the values of the necessary parameters are known. These

values are usually not known, but typical magnitudes range from 10-2 to 10.1 seconds

(Ferry, 1981) depending mainly on the molecular weight of the rubber (i.e. higher

molecular weight rubbers have higher relaxation times). These times are lower than that

used to model the results here. To simulate the relaxation curve given by Dafalias (Fig.

4.6.1) relaxation times of 4, 2x103 and 4x104 seconds were used. The relaxation function

used to simulate the axial stretch data is shown in Fig. 4.7.3. It shows relaxation

occurring well beyond the normal Rouse relaxation times. For many solid rubbers,

relaxation occurs at times much higher than that given by the Rouse relaxation time. The

high relaxation times seen in the data can probably be attributed to the unattached chains.

For polymer melts, investigators such as Doi, Edwards, Bird, Graessely, Wagner and

others do not emphasize the force equilibration process and concentrate on the chain

retraction and disengagement process. Of course these affects are much more profound in

polymer melts.
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Fig. 4.Z3 Relaxation function used to model uniaxial constant stretch rate

data in Section 4.6.

Again, the model was predicated on the idea of a perfect network. It was assumed

that the majority of the network was crosslinked and effects due to imperfections would

not be very apparent. It was hoped that by applying high relaxation times, despite the

theoretical conflicts, effects due to non-ideal conditions could still be captured. The

effects were not captured and the inadequacy of the model is manifested in the strain

dependence it predicts.
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4.8 Two Network Theory

The strain dependence for the chain disengagement process is different than that

of force equilibration. The so called "fixed network" theory of polymer melts given by

Doi and Edwards (1978 and 1986) and outlined in Section 4.2 assumes that the tube and

the friction it applies are the only factors which influence the behavior of an unattached

polymer chain. The tube is deformed affinely by the macroscopic deformation and new

tube sections are formed randomly. The ~’fixedity" of the network implies that relaxation

of the surrounding network does not affect the kinematics of the tube or the growth of



new tube sections. One could imagine a more complex model where relaxation of the

surrounding network would cause the tube to straighten or inhibit the growth of new

tubes. A crosslinked chain would also be influenced by the tube but would not reptate.

The fixed network theory assumes that chains and tubes are treated independently from

the surrounding network. A network which includes both crosslinked and unattached

chains is seen in Fig. 4.8.1. Since the "fixed network" theory assumes that the chains

behave independently, the stress due to crosslinked chains " 6c " and the stress due to

unattached chains " cru " could merely be superimposed i.e.

= o + o (4.8.1)
C U
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Fig. 4.8.1 A network of crosslinked and unattached chains. The crosslinked

chains are shown in bold. Some of the unattached chains are crosslinked at

one end while some are not crosslinked at all.

All the elasticity effects would be attributed to the crosslinked chains. The stress " Ou "

would be strictly viscous and would not contribute to the equilibrium stress. The "two

network" model would be both a solid and a fluid. The crosslinked network will always

retain its "memory" of the undeformed reference configuration while the fluid phase will

become isotropic after flow has ceased due to the disengagement process.
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The qualitative effects of unattached chains are assessed in the following for a

constant axial stretch rate deformation. The constitutive equation which considers the

effects due to the disengagement process is shown in Eq. 4.2.10. Unfortunately there is

no equation which incorporates effects due to the retraction process for arbitrary

deformation gradient histories. Furthermore, Eq. 4.2.10 was derived for unattached chains

and does not consider dangling chains. For this case, wewill treat dangling chains the

same as the unattached chains although they do behave differently (Curro and Pincus,

1983). For uniaxial deformation Eq. 4.2.7 can be integrated analytically (Doi and

Edwards, 1978 Part 4.) such that the equation describing the Cauchy stress is,

f 3 ~(t,x) ( tan-l~/~.~(t,x)-I
Cl =Gd l’t(t-’~)(2 I-~’~(t,’l:) 1 ~---1 -½) dx (4.8.2)

~.l(t)where ~q(tx) = ~ is the relative stretch, g(t) is given by (4.2.8) and Gd = 3 kT 

defined in Section 4.2. Values for 1:d in 4.2.8 can range from 102 to 105 seconds

depending on molecular weight of the polymer chains. Just considering the effects of

chain disengagement and ignoring retraction and force equilibration, Eq. 4.6.2 was used

for Crc and Eq. 4.8.2 was used for Ou to fit the data given by Bloch et. al. (1978). The

following parameters were chosen:

for gc (same as used previously):

Ge = 2.73 (MPa)

No = 50

for gu:

Gd = 0.41 (MPa)

~d = 10 minutes

In Fig. 4.8.2 the results for the 3 different rates r = 0.0011 min.-1, 0.442 rain.-1, and 4.42

rain.- 1 are shown. Again, the viscoelastic portion of stress ( ~u for this case) is small for 

= 0.0011’. The viscoelastic backstress ~v - (ru for r = .442 and 4.42 is shown in Fig. 4.8.3.
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disengagement model was usedfor simulated results (data from Bloch et. al.
1978).



Comparison of Figs. 4.6.5-6 (force equilibration) to Figs. 4.8.2-3 (chain disengagement)

show a marked difference in strain dependence. The results using chain disengagement

appear to be qualitatively better than that using force equilibration. Examination of Fig.

4.8.3 shows that the relaxation function doesn’t give the proper time dependence for the

different rates. This inadequacy has also been reported in applications of the reptation

model to polymer melts. One reason for the discrepancy is that the derivation of the Eq.

4.2.7 was based on the assumption of monodisperse polymer chains (i.e. all the chains are

the same length). There are modified versions of Eq. 4.2.7 which consider

polydispersity. Wagner (1992) claims that effects due to chain retraction need to 

considered especially when polydispersity is included. Again, there is no molecular

constitutive model which incorporates chain retraction for arbitrary (homogeneous)

deformation histories *. It is expected that incorporating effects due to force equilibration

for both the crosslinked and uncrosslinked chains plus chain retraction for the

uncrosslinked chains could give good quantitative results.
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4.9 Proposed Phenomenological Model

The two network model provided reasonably good qualitative results for the

constant axial Stretch rate behavior. As mentioned, the time dependence could not be

predicted by the kernel given by Eq. 4.2.8. The effect of monodisperse polymer chains

was considered to be one reason the time dependence was not captured. Another reason is

due to the fact that Eq. 4.2.8 and 4.2.10 are not valid for the dangling chains. A solid

rubber will have many dangling chains due to incomplete curing (Mark and Erman,

1988). It is expected that a different kemel function would yield better results. A power

law kernel such as that given by Eq. 4.3.1 (b) would be a suitable form. An approximate

form for Eq. 4.2.10 was given by Currie (1982),

* It seems that an assumption of the chain force and rate of retraction could be made and put into Eq. 3.3.2
would provide a suitable approximation.



92

i ¯

5 l-t(t- "~) ((2~j1- (I~ + 13/4)-1/2 ~2ij) dxOij(t) = Gd I~ + 2(I~ + 13/4)1/2- 1 (’4.9.1)

~Xk(t) ~Xk(t)
where (2.1 - ~xi(x) ~xj(a:) is the relative Cauchy Green tensor, the invariants are I] 1

and I~ = Cii, the kernel function is given by (4.2.8) and Gd = 3 kT nns as defined 

Section 4.2. Substitution of the power law kernel into Eq. 4.9.1 should yield good results,

Because (4.9.1) is in terms of the Cauchy stress and the relative strain tensors, it is not 

amenable to finite element formulations as a methods given in terms of the second Piola

Kirchoff stress and the Cauchy Green tensor. Although Eq. 4.9.1 could be put in terms of

the second Piola Kirchoff stress and Cauchy Green tensor, the conversion would be

complicated. The following equation for the Kirchoff stress is proposed as :~n

approximation,
t

_~lff 1 sinOdOd~ d,I:+pl~K]FL j (4.9.2)
S(t)KL = ~t(t- X) (~,(X)} MK ME. ~,(X) 4rt

moo

Although Eq. 4.9.2 is an empiricism, for a single step strain it is the Kirchoff stress

equivalent to Eq. 4.2.9*. The quantity (~.) and the integral over the orientation space 

Eq. 4.9.2 are approximated by Eq. D.8 and D. 10 from Appendix D and substituted into

Eq. 4.9.2 giving,

t

f ~t(t-’~)G d d [[5r_ln

S(t)Kt’= (311’2.12/13n) -d-x//5’’ -- --
(4.9.3)

Eq. 4.9’.3 is used in place of ~u given by the two network theory as the stress of the

unattached chains. In order to match the constant axial stretch rate data given by Bitch et.

al. (1978), the following material parameters were used with Eq. 4.6.2 and 4.9.3,

* Eq. 4.2.9 is considered to be the more rigorous solution for a single step strain comparedto Eq. 4.2.10
and especially Eq. 4.9.1.
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for ~c "

Ge = 2.5 (MPa)

No = 50

for ~u i.e. Eq. 4.9.3

G(t) = g(t) Gd - 
1 + (t/lxl0-8)

Results using 4.6.2 and 4.9.3 with the above parameters are compared to the experimental

data in Figs. 4.9.1, 4.9.2 and 4.9.3. Because of the kernelused to fit the data, the r =

0.0011 min-1 curves in Figs. 4.9.1-2 contain a small amount of the viscoelastic stress.

Coincidentally, this produced a better fit at the slow rate after slightly reducing Ge from

2.73 (MPa) used in Sects. 2.6 and 2.8 to 2.5 (MPa). The viscoelastic backstress shown 

Fig. 4.9.3 is still the difference between the r = 4.42 and the r = 0.0011 curve and r =

0.442 curve and the r = 0.0011 curve. Because some viscoelastic stress was seen at r =

0.0011, Fig. 4.9.3 is not exactly the viscoelastic backstress; but it is close. Eq. 4.9.3

appears to provide good fits of the experimental data.

4.10 Conclusions

It is concluded that the contribution of force equilibration alone is not sufficient in

describing the viscoelastic behavior of many rubbers. Effects due to network

imperfections must be considered. The rationale and possibly the methods used to

develop the force equilibration viscoelastic model are not wrong, per se. It is wrong to

attribute too much of the irreversible portion of the stress to the force equilibration

process. This is done by using relaxation functions G(t) and relaxation times that

exaggerate the effects of force equilibration. Realistic relaxation times for the force

equilibration process would be on par with the Rouse relaxation times given by Eq.

(4.2.52). Overemphasis of the force equilibration yields the wrong strain dependency 

seen by constant strain rate experiments; It would be interesting to see if the method

proposed here was applicable to high strain rate experiments. For such a case, the method



could still be applied to imperfect networks since unattached chains still experience force

equilibration. Nevertheless, a more physically based prediction of the.nonequilibrium

force than that given by Eq. 4.3.1 would be useful (the statistical mechanics are available°

for such an approach).

The "two network model" appeared to give acceptable qualitative results. A model

that combined the effects of force equilibration, chain retraction and chain disengement

should be considered. Such a model would be able to capture effects (i.e. time and strain

dependence) due to high and low strain rate loading.

It was expected that the mechanistic (or molecular) models considered here could

better serve to motivate more phenomenological models than to quantitatively model

experimental results. The empirical constitutive law presented in Sect. 4.9 was based on

the disengagement of unattached chains and provided good qualitative and quantitative

results to the experimental data.
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Fig. 4.9.1 Force per undeformed area for three different uniaxial stretch rates. The
empirical chain disengagement model was used for simulated results. (data from
Bloch et. al. 1978)
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Fig. 4.8.3 Viscoelastic Cauchy stress for r = 4.42 and r = 0.442. The
empirical chain disengagement model was used for simulated results (data
from Bloch et. al. 1978).
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Fig. 4.9.3 Viscoelastic ’backstress’ for r = 4.42 and r = 0.442. The empirical
chain disengagement model was used for simulated results (data from Bloch
et. al. 1978).
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5. FINITE ELEMENT IMPLEMENTATION

A plane strain finite element program was developed to implement the proposed

elastic-viscoelastic models. The program used a total Lagrangian formulation and a

Newton Raphson algorithm to solve the governing (geometric and material) nonlinear

equations. The algorithm provided for consistent tangent stiffness moduli through exact

linearization of the recursion approximation of the hereditary integral such that second

order convergence was achieved. A quasi-incompressible formulation was used such that

a suitable expression was Chosen for the volumetric free energy as a penalty function. The

method exhibits incompressible behavior in the limit as thepenalty parameter tends to

infinity. The details specific to this program are discussed in the following..

The rubber has so far been considered incompressible. The development of the

rubber elasticity model here only considered the entropic portion S of the free energy

and neglected the contribution of the internal energy E where

dW = dE- T dS (5.1)

and T is the temperature. It is known that rubber is somewhat compressible and does

exhibit changes in internal energy due to deformation. Most of the internal energy

changes are due to dilation*. Usually this internal energy contribution is treated

empirically and there are many postulated forms. Since, a sophisticated treatment of this

topic is beyond the scope of this work, the introduction of compressibility made here will

only be in the form of a penalty function to facilitate finite element analysis. In this case,

the material is treated to be very nearly incompressible. Considering only the elastic case

for a moment, the following form for the equilibrium free energy is used:

qJ(F) = Wv°l(J) + Wentr°pic(F) (5.2)

i

* Although at small strains this is often not the case (Treloar, 1958). Some investigator have reported the
necessity of including distortional contributions to the internal energy (Peng et. al., 1972, 1975)
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were Wentr°pic(F) is the entropic portion of the free energy given by Eq. 2.2.17 and

Wvol(j) is the portion of the free energy which depends on the volume ratio J and

maintains the near incompressibility constraint. Sometimes analysts make the entropic

portion of the free energy invariant to dilation by substituting the deviatoric deformation

gradient Fdev * for F such that Wentr°pic = Wentr°pic(Fdev), but this leads to an

unnecessarily complicated formulation. The following was used because of its simplicity,

1
Wvol(j) = ~ 1~ (J - 2 - c J (5.3)

The constant c is chosen to provide stress free conditions in the undeformed state. The

constant ~: is the penalty parameter chosen to provide near incompressibility. Many other

forms are available but it was found that results are rather insensitive to the’form when

the deformation field is nearly isochoric. Using 5.2 and 5.3 to calculate the elastic portion

of stress gives,

¢v.e.lastic = 2vlj J ElK (~KL(Wentropic + wvol))FjK = (y.e.ntropic + (K1j (J-1)-c)~ij

]

(5.4)

where is (y~ntropic is givenby Eq. 2.4.5 or 2.4.6 divide by the volume ratio J as such,

1 " (~.), 3 
~ijntr°pic= ]-G Nff’~’-o L"(~o)(-~(I1-1’2- 5 i1512 )Bij--~I1-3/2B2)

(5.5)
For the undeformed state, it canbe shown by replacing FiK = ~iK into Eq. 5.5 gives,

c~ntropic _ 1 G
2 1 0Nlo) -3/2 ~ij

(5.6)

If the rubber is in equilibrium in the undeformed state then (y~lastic = 0 SO that substitution

of J = 1 and 5.6 into 5.4 provides the value of c:

*Fdev = j-I/3 F where F is the deformation gradient and J =det I F I
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c- 1 G (5.7)
2 1 - (No)-3/2

Including the contribution of the viscous portion of the stress is made as usual,

~ij = t~lastic + (viscousij (5.8)

where ~lastic is given by Eq. 5.4 and t~i’~isc°us is given by the transformation:

cviscous 1ij = y FiK S~(L FjL (5.9)

t~viscous _and S~,L is given by Eq. 4.5.2 (or 4.5.4). At equilibrium in the undeformed state vij 

0 so that no special consideration need be made for ~jiscous. Furthermore, the penalty

number ~ will maintain near incompressible conditions for the elastic and viscoelastic

cases.

The penalty method can be implemented with a mixed formulation using a

separate pressure and displacement field. But, exploiting the element equivalence as

outlined by Malkus and Hughes (1978) for finite strain formulations, a single

displacement field with reduced and selective integration is used. For the 2D plane strain

finite element program developed here, 4 node bilinear finite elements were used. The

stress given by the penalty function is sampled at the center Gauss point (Fig. 5.1) while

the remainder of the stress given by Eq. 5.8 and 5.4 is sampled at the 2x2 Gauss points.

¯ X X

1( (J- 1) t~j isc°us + ~iij ntr°pic -c ~ij

Fig. 5.1 Four node bilinear element with selective and reduced integration.

Constraint is applied by sampling penalty function at center Gauss point.

In order to achieve second order convergence, the tangent moduli Lijkl given by:
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_ ~Sij
tijkl - ~ - (5.10)

must be computed from an exact linearization of the constitutive law. The process is

trivial for the elastic portion of the stress but requires numerical integration of the

hereditary integral for the viscoelastic stress. A procedure similar to that given by

Herrmann and Peterson, (1968) is used. Considering only a single exponential kernel

with relaxation time to, the viscoelastic stress given by Eq. 4.5.2 or 4.5.2 is of the

following form:

i
t

S~j(t) = fij0p(Cmn) e-(t-z)/to d (111/2 Cop) d’17 (5.11)
c

Taking the gradieni of S~j(t) and using the chain rule gives,

v ~vto d (1]l/2fijop(Cmn) c -(t- Cop) (5.121)tijkl = ~
-

=
e_(t_x)/t° d gl_l/2t.. , a

fijop(Cmn) c e-(t-x)/t° (Ii 1/2 Cop) d’c -I- fijop(Cmn) ~ ~’-~11 ’---op3 d’t

(5.122)
where L~jkl are the tangent moduli for the viscoelastic stress. The gradient of the first part

of the rhs of Eq. 5.122 is straight forward. The gradient of the second part requires

numerical integration of the hereditary integral. The following recursion relation is used

to get the value of the integral fit time t from time t - At:

ft x)’tod (111/2(.r,)Cop(.c))d,r, 1-e-Atlt°~
c e-( t- ~ At (Fll/2(t) C°p(t)-Ill/2(t-At)C°p(t-At))

ft-At

+ e-At&l e-(t-At-x)/t o d ,-,-1/2, , ,.-, (),c --d-~xt.tl tX)~op’r,)d’c (5.13)L



Consequently the gradient of the hereditary integral is approximated as follows,

f’
(1-e-At/t°/ O Cop(t))

c e-(t’z)/t° d (ill/2(,~) Cop07)) d’c = to
~K~kl(t) ~ Z 7 ~-~kl(t)(II’,2(t)

=to !-~-..)t-~I13/2(t)~,Cop(t)+~i/2(t)SkoSip 

As mentioned in Sect. 4.5, if the constitutive law is given by Eq. 4.5.2, the tangent moduli

L~jkl are not symmetric. If the constitutive law is given by Eq. 4.5.4, the tangent moduli

L~jkl are symmetric. The symmetric tangent moduli are computationally much more

efficient.

As an example, the solution is given for the boundary value problem

corresponding to the rubber block fixed on both ends and sheared (Fig. 5.2 and 5.3). The

constitutive equation for the elastic stress was given by Eq. 5.5. The unsymmetric form of

Eq. 4.5.2 was used for the viscoelastic stress. The material parameters are given by,

elastic rubbery modulus

number of links between entanglements

relaxation time

relaxation function

penalty parameter

Ge = 0.32 MPa

No= 75

to = 0.25 seconds

Gv(t) = 2 e-(t / 0.25)

- 1000

The undeformed block is shown by dotted line in Fig. 5.2 (a) and is of unit dimensions

(meters). The mesh consisted of 100 4 node bilinear elements. A cyclic shear strain

history (Fig 5.2 (b)) in the form of a triangular pulse is applied to the block. 

maximum shear strain applied is 7 = 1. The deformed bearing at 7 = 1 is shown in Fig.

5.2 and the average shear stress (V = average Zxy) is shown in Fig. 5.3. Forty steps were

used to complete a cycle of loading such that it took 10 steps from (t = 0, Y = 0) to (t = 30,

7 = 1). The Euclidean norm of the out of balance force vector was used as the

convergence criterion. Second order convergence was achieved as evident by the values

for the error norm in Table. 1 for a few of the initial steps. The penalty parameter ~ =

100



1000 was effective in maintaining the near incompressibility constraint. Most of the

values of the volume ratio were within + lxl0-6 of unity except for a few elements in the

comers where 0.997 < J < 1.003 (J being the volume ratio).
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Table 1.
Values of the Euclidean norm of the residual

Step number Error
1 (y=0 to 0.1) 6.25430E-01

2.93721E-01
6.41837E-03
3.84168E-03
1.80959E-04
3.08567E-06

7.33610E-01
2.89386E-01
5.86986E-03
3.40927E-03
1.66387E-04
2.78671E-06

2.65322E+00
1.24420E-01
2.00771E-03
3.03412E-04
5.96701E-05

9 2.91919E+00
9.88782E-02
1.92582E-03
3.12610E-04
5.79649E-05

10 (T=0.9 to 1)3.14567E+00
7.92877E-02
1,84041E-03
3.16853E-04
5.67332E-05
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Fig. 5.2 (a) Undeformed unit (lm x lm x lm) block show in dotted line along 
deformed block and mesh. (b) Displacement history function applied to block.
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Fig. 5.3 Average shear stress Xxy verses horizontal displacement u for bearing
in Fig. 5.2
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CONCLUSIONS AND RECOMMENDATIONS

Different physically based constitutive models were examined in this study and

different degrees of success were achieved in qualitatively and quantitatively matching

experimental results. At the very least, valuable experience is gained when it is shown

that the assumptions predicating a given model do not provide a realistic representation of

the physical system. It seems that a comprehensive regime of tests on commonly used

rubber solids under highly controlled conditions could be very useful in elucidating the

generalized behavior of the material (assuming there is a generalized behavior).

The scheme used to approximate the orientation space integrals in terms of strain

and strain invariants gave good results compared to the exact numerical integration

solution of the integrals. Application of the scheme to the elasticity models gave very

good approximations up to relatively high strains; especially for the entanglement model.

To a lesser degree, application of the scheme to the force equilibration viscoelasticity

model also gave good results.

As was seen in Section 1, the classical theory when fitted for uniaxial data could

not fit the equibiaxial data. The proposed entanglement model provided much better fits

to the experimental data, but as was shown in Section 4.6 shows some discrepancy when

plotted using a Mooney plot. Other theories such as hoop and tube models can provide

better Mooney plots (Higgs et. al., 1990), since these models are more sophisticated than

the entanglement model used here. Nevertheless, these models don’t consider finite

extensible chains. It seems plausible that these models could be modified for finite

extensibility, furthermore the hoop and tube models are based on the familiar average

stretch quantity (~,) which can be well approximated.

The force equilibration model clearly shows the wrong strain dependence

compared to experimental data for the constant axial stretch rate deformation. It would be

instructive to see if the force equilibration model could predict high strain rate test



results, since it seems that hardening would occur as opposed to the characteristic

softening (i.e., slight concave down appearance of curves in Fig. 4.6.5, 4.7.1 and 4.7.2)

behavior seen at the slow rates. One explanation of the softening could be that chains are

broken during the loading process. Another explanation is that many unattached chains

may exist within the rubber matrix. The latter explanation is the basis of the so called two

network model considered here.

The two network model appeared to give good qualitative results compared to the

uniaxial constant stretch rate experiments. In this model the unattached chains disengage

from the tube of constraints as explained in the Doi and Edwards reptation theory. A

general model that considers effects due to force equilibration, chain retraction, and chain

disengagement of unattached and dangling chains could be useful. The two .network

model motivated the empirical model which provided very good fits to the experimental

data.
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APPENDIX A

The principle stresses are found by taking the derivative of the free energy W (Eq.

1.2.5) with respect to principle stretches such that:

= n w(~,)(Yl -- G3 ~’1
/ 0 0

sin ®
d®dO nff w(~,) -- d®dO (A.1)

4n 4n

Where Gi and ~i are the i th principle stress and stretch respectively. Now using

2 2 2
)~2(®’0) = ~’1 cos ® + )~2 sin ® sin 0 + )~3 sin 

and Eq. 1.2.6, the following derivative is found:

1 ~ (~,1COS20)
d~,I

(A.2)

Using A.2 and a similar expression for the ~,3 derivative in Eq. A. 1 gives:~

2R

~1 Gq/--N ff 1 L_I(&)(~2cos2® 2. 2 sineo) sin = - )~3sm El ~ dO dO
~/N t ~ 4n

0 0

(A.3)

such that G3 = 0 and G = nkT. Exploiting symmetry, and making the change of variable

C = cosO, Eq. A.3 is modified as such:

it/2 I

(Yl = 8 G4r~"ffl L_X(.~) ~ (~21C2 ~(1 - C2)sin20) dC (A.4)

0 0

Modifying A.4 for uniaxial tension ~3 = 1/’~(-~-1 gives:
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rU2 I

ff 1 1 ~ (~21C2 1// 
d(I)at: 8 Gv/’-ff ~L-(-~) - (1-C2)sine,)dC

0 0

(A.5)

For equibiaxial tension using the coordinate system in Fig. 1.2.4 (b), (Y2 is considered

instead of Ol and ~,I = 1/9~2 such that

~/2 1

GV/-" ~ 1 cTl(._~._~ ) ~C2 - 1 2 -
(12=8 ff~, VI--N( 5//~,2 (1 C2)sin 2(I)) dc d(I:)

0 0

(A.6)

Figs 1.2.5 and 1.2.5 are plotted as stress per undeformed area f = ~1/~,1 while Fig. 1.2.6 is

plotted as f = oh/E2.

Eq. A.5 and A.6 was integrated numericallyby an adaptive Gauss point

integration scheme.~ The rectangular domain is discretized into panels each containing 36

(6x6) Gauss points. The adaptive scheme is outlined as follows:

I. Discretize the domain (~,C) into 4 panels (1-4) and compute the integrals (I1 - 14) 

each panel (Fig. la)

2. Subdivide the first panel into 4 sub-panels (1.1-1.4) and recompute the integral for the

domain of panel number 1 (Fig. lb) such that

3.If I1 - I] ] < ~ where e is some desired tolerance then I~ is used for value of the integral

over the domain of panel 1 and.step 2 is repeated for the panel 2 (Fig. 2a).

4. K the difference is greater than the tolerance ~, then panel 1.1 is subdivided into 4 sub-

panels ( 1.1.1-1.1.4) (Fig. 2b) and checked, such 

4

I]’l =i=~l II’l’i

and ] I1.1 - I~.1 < ~ must be satisfied or further subdivision of 1.1 is necessary.



The subdivision process is repeated for all the panels and sub-panels and their values are

summed to give the integral of the entire domain. An error tolerance lxl0-6 was used to

calculate the integrals throughout this work.

(rt/2,0) (rt/2,1 ) (rt/2,0) (rl:/2,1 

4 3

I 2

4

1.4 1.3

1.2

3

2

1.1

(0,0) (0,1) (0,0) (0,1)

(a) (b)

Fig. 1 (a) First 4 panels of domain. (b) Subdivision of panel 1 into 4 

panels 1.1-1.4

(rcl2,0) (g12, I ) . (rcl2,0) (~12, I 

113

4 3

2.4 2.3

2.1 2.2

4

1.4 1’3

1.1.4 1.1.3

1.2
1.1.1 1.1.2

3

2

(o,o) (o,o)

(a) (b)
Fig. 2 (a) Subdivision of panel 2. (b) Subdivision of panel 

(0,1)
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APPENDIX B

Uniaxiai Tension

For uniaxial tension and compression Eq. 2.2.9 and 2.2.20 can be solved

analytically. Assuming incompressibility, the following transformation is used:

lU’ } I £1 0 0
1

U’ £]1/22 = 0 0

U’3
0 0 £]1/2

cosO

sin® cos~

sin® sin~

" £1 COSO 1

£]1/2 sinO cos~t
£]t/2 sin® sinq~ J (B.1)

From Eq. B. 1 the stretch is then found to be:
i ¯

£ = "4 U’kU’k q £12 C0S20 + ~q-1 sin20 (B.2)

and upon integration (Marrucci, 1979), the average stretch is:

/g

1 4 £12C0S20+£I -lsin20 sinOdO = ~£1 1+
sinh-1 q £13-1

£13/2 ~ £13-1

(B.3)

For uniaxial loading G2 = G3 " 0. Using Eqs. 2.2.20 (b) and B. 1, the longitudinal stress 

is described by the following relation:

2n n

G1- G1 - 1/2(G2+ G3) = G N~o L-I (~/NoT"~)(£)’j £12cOs20 -1 £!-1 si n20. £’7 sin---~-O dOd~a/t

= 3 G N~--~-o g_l( (~N~o)Xt £13+1(1 4£13-1
2 £13-1 2£13+ 1

where (£) is defined by Eq. B.3.
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Equibiaxial Tension

Eq. B.3 and B.4 may also be used for equibiaxial tension in the 2-3 plane (i.e. o2

= 03, and Ol - 0). Substituting )1 = ( )2 )-2 into Eqs. B.3, B.4 gives the average stretch

(Eq. B.5) and equibiaxial stress o2 (B.6).

1 sinh-I 4 )2-6-1
()} = ~)2.2 ( 1+ ) (B.5)

)2-3 4 )2-6-1

-6 1
3 ()) , a-2 ~,2 02 = 02- O1 = -- G ~ L-l( ---- ( 1-

’2 ~--o )~2 )2-6-1

4)2-6- 1 sinh"1 4 L2-6-1 )

2)2-6 + 1 )2-3 q )2-6_ 

(B.6)

Pure Shear

For pure shear Eq. 2.2.9 and 2.2.20 cannot be solved analytically, hence the

numerical quadrature method similar to that described in Appendix A was used. Again

assuming incompressiblity, the following transformation is used:

U, 1 }

U’2 =

U’ 3 o{0

1

From B.7 the stretch is shown to be ̄

coso } / ,coso
sinO cos~ = ])2 sinO cos~

sin® sin~ sinO sinq~ (B.7)

) = ~/ U’k U’k = q )2-2 COS2(~+)22 sinZOcosZ~+sin2~gsin2~ (B.8)

The equation for the average stress is:

* From incompressibility ~,1L2~3 = 9~1()~2)2 = 1 for equibiaxial stretching in the 2-3 plane.
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(B.9)

According to the coordinate system used (Fig. 2.3.1), ~I = 0 for pure shear; therefore,

from Eqs. 20 and B.7, the longitudinal stress CYl is described by the following relation:

sin®
-- dO d~
4re

(B.10)

Eqs. B.9 and B. 10 cannot be solved analytically so the numerical quadrature technique

similar to that described in Appendix A is used.
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APPENDIX C

Proof of Eq. 4.4.2

The following is a proof of Eq 4.4.2 using a single exponential kernel. The proof

can be easily generalized to include a Prony series kernel.

Lemma 1.

0 / ce-(t- x)/to~(X) d’c
O~.(t)J

f-

O ’ lim /(1 - eAt/t°) (~L(t) - )L(t 

a~,(t) At -->0[ At

Lemma 2.

The stretch ~ = ~(®,O,t) is a function of the Cauchy Green tensor C(t)KL and 

direction cosines i.e.

therefore

~, = g(®,O,t) = ~/MK C(t)KLML

Using Lemma 1. and Lemma 2:, the gradient of the free energy Eq. 4.4.1 is taken to be:

~q.,v
---=2--
OE(t) 

!

Sin 0 dO dO1 c e-(t- "c)/to J~(’c) fir, 
~C(t)KL .

)

(! ce sin 0 dO dO
4r~



Which is identical to the viscoelastic stress given by Eq. 4.3.5. with a single term

exponential kernel.
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Proof of ~ 0

Lemma 3.

t! )
2̧

t

~-
c e-(t- x)/to ~(x) dx c e-(t- x)/to ~(x) dx + c 

but E(t)KL is constant therefore~,(t) = 0 

~- c e-(t - "t*)/to j~(x) d,~ = - c e-(t - x)/to ~(~) 

By definition

ce-(t-z)/to~(X) ] 4n dOd~

0 0

Therefore using Lemriaa 3.

ff l ce-(t - x)/to ~(x) dx sin O dO d~ 
o0- ]q-U

- (qed.)
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APPENDIX D

This Appendix includes the derivation of Eq. 4.5.2 and Eq. 4.5.3. First the

derivation of 4.5.2 is considered.

Proof of Eq. 4.5.2

The definition of the viscoelastic backstress is,

(D.1)

Taking the time derivative of the following approximation for the strectch, ̄

(D.2)

gives,

= ¢3 d (i1)1/2
6 ~- +?MKMLd (II-I’2cKL) (D.3)

From here on, the differential area --
sinO

4n
dO d~ is replaced by d~ and the double integral

is replace by the integration over f~. Substituting Eq. D.3 into Eq. D. 1 gives

t

fMKML f 4dS~L(t)=
~

d..Q G(t-z) ~--~(I1)1/2d’c 

t

"
f MKMLMoMPd’QfG(t-%)4d(II-1i2COP)X dx d’~

(D.4)

At this point the time and spacial integrations are decoupled. It remains to find an

approximation of the spacial integrations. Many different methods were tried, the
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following method was the most successfull. Since ~,2(O,(I)) = MK CKL MLit. is recognized

~, _ 1 MK ME and therefore:that 3-CKL 2

1 fn MKML 3 fn
L (D.5)

Consequently, if the integration on the right hand side of (D.5) is approximated 

invariants, the gradient of that approximation gives the desired result. This time a higher

order approximation than that in Eq. 1 is used for ~, is used to give better accuracy i.e.

K= Ifi-~ + 1 (~)-1/2 (~2 _~)+ 1 (~)-3/2(~2 _I1)2 
3"

Substituting Eq. 6 into the spherical integral gives,

(D.7)

¯ Using the integral identities give by Eqs. 1.16 - 1.19 gives the following approximation,,

fn~, d£~ -~ 1-~ (3111/2+ I2
(D.8)

Taking the derivatives of the strain invariants with respect to Greens tensor gives

f MKML df~ " -~ (Ii -1/2 3 12
- 5 115/2 ) ~KL- -~ I1-3/2 CKL

t2

(D.9)

The second spacial integration in Eql D.4 is approximated in the same fashion. It is

recognized that,

MK MLMoMPdE~ (D.IO)
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Using the same Taylor expansion method used to get (D.6) the following approximation

is given for ~3,

~3= (~_)3/2 + 3 (~)1/2 (~2 _ ~) + 3 (~) 2-I1).2 (D. 11)

Substitution of (D. 11) into the integral and using the integral identities given by Eqs. 1.42

- 1.44 gives the following approximation,

f ~3 df2_11_~011)3/2 1 /Ill"1 /2
10 T - ]--0 ~T! I2

(O.12)

fl

Taking the first and second derivatives of (D. 12) with respect to CKL gives,

= L N 3- -N[3-) I2J op 
O

45

Now results from (D.9) and (D. 13)can be substituted into (D.4) to 

S~(L(t) =[ 2~(I]1/2 3 I25 i~/2) ~KL" ~ I’3/2CKL] ]G( t- ’c) 6~--~3 d (Ii)’/2d’~   

Il -3/2
[[(13 (I’) -’’2903 901 (~_}-S/212)~IJ~KL ~ ( 3-) ( ~IjCKL+CIJ~KI~ +

15 3 ’

It is easily seen that,

i G(t-’~) 2~d(Ii-1/2Cij)d’~

(D.14)

it

it

G(t - "¢) ,-~(_ 1/2)d,~ 1d’l: = ~IJ G(t- 17) d--~-(Ii1/2 CIj) d’ (D. 15)



Substituting (D. 15) into (D. 14), combining like terms and making use of the symmetry 

Cu the following simplification of (D. 14) results:

S~:L(t)= I]’/2[ Iii ~ ~ IllG 3----6--- (14- 9--) ~KL~IJ -
KLCIJ - IJCKL + 6 8KISLJ (t - X) d ri-1/2 C[j) a7’1

(D.16)

This is identical to Eq. 4.5.2. As mentioned, the derivative of (D.16) with respect to the

strain gives a nonsymmetric tangent stiffness matrix. If the approximations given in Eq.

D6 and Eq D. 11 where one order lower (i.e. the same order as Eq. D.2), the expression

for the stress would be the same as the symmetric form given by Eq. 4.5.4. It is the higher

order approximations made in Eqs. D.6 and D. 11 that give the additional accuracy but

sacrifice the symmetry.
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Proof of Eq. 4.5.2

The proof is given for a single exponential kernel function but is easily

generalized for a Prony series. The derivation of Eq. of 4.5.3 starts from the definition of

the scalar potential function (cf. Eq. 4.4.1)

)sinowv= 1 c e-(t - x)/to ~ dx --4-
00

Now substituting D.3 into D. 17 gives,

dO dO (D. 17)

qjv 1 (I "l:)/t if3 d (11)1/2+ ~ r,,r t,~ 
c e-(t-

6 d’c T ~’*Kl"Ld"~ ( II’I/2CK d’~ x

(f 
~ ) )sinO

c e_(t_Ti)/to if-3 d (11)1/2 q~-MNMo+ rlI-1/2CNo) drl 47t6 drl
dO dO

(D.18)
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where the first time integration uses the dummy variable x and the second time

integration uses the dummy variable 11. Now expanding terms and seperating the terms

which are integrals over the spherical coordinates gives,

¯ v c e-(t- -- d’~ x c e-(t .-7 (I1)1/2 drl +
d~

__c _ rl)/to d
4

ce-(t
-- (ll)I/2 I x ce_(t_z)/t ° d (l ]_,/2CKt~)dx x

d~

2m

II MKML

00

sin O
dO d~. +

4n

3c

8
-- c e-(t- x)/to d (II_I/2CKL) d’r x -( t- q)/to d. (II _I/2CNo) dll

d~ . dq

2~

ffMKMLMNMo sin_.__.OO

4~
00

Now the following integral identities are used,

dO d~

(D.19)

21t

ff sin ® 1
MKML 4~-- dO dO = ~

oo

2~

ff sin O
MKMLMNMO --

4x
o o

(D.20)

(D.21)



Substitution of Eqs. D.20 and D.21 into D. 19 and performing the inner products gives the

desired result (cf. Eq. 4.5.3),

wv 3c 1/2 dx
-- ~ e(t-z)/t° (I1) +

t t

cffe(2t-x-q)/t°dt’l/z L)~-~(-~ , h-~(ll K  I1-1/2 CKL) d’c dTi (D.22)
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